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Gas dynamics is defined as the science of motion at great pressure 
differentials and high velocities, velocity being measured in terms 
of the speed of sound. The book confines itself to specific phenomena 
of gas dynamics, i.e., those which have nc analogies in the mechanics 
of an incompressible liquid. Emphasis is placed on careful definition 
of the fundamentals of gas dynamics, fundamental laws, and methods of 
solving simplest problems, rather than an the computational methods 
of gas dynamics or methods of numerical integration of complex two- 
and three-dimensional flows, etc. Attention is devoted to problems 
of flow around bodies moving at great speeds, motion of a gas in ducts 
such as nozzles and pipes, ai.d compressibility of the moving medium. 
The second main topic is shock wai es considered under the theory of 
shock waves, shock wave laws, and the problem of the destructive 
effect of explosions and propagation of the explosion on the explosive 
substance (capable of chemical reaction). The author intends the text 
to also serve as an introduction to the theory of explosions.
English Translation: 231 pages.
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THEORY OF SHOCK WAVES AND INTRODUCTION TO GAS DYNAMICS

By

Ya. B. Zel'dovich »
Introduction

Gas dynamics is a component part of hydrodynamics, the science of fluids, liquids 

and gases.

A particular feature of gas dynamics is the need to keep account of the compressi

bility of the medium. Liquids may be considered incompressible under normal circum

stances, whereas gases change their volume considerably even under a slight variation 

in pressure.

It is obvious that specific formulas and laws of gas dynamics have to be applied to 

gases only insofar as we are dealing with pressure changes of great magnitude.

In the case of small velocities, the motion of gas can be regarded in the same way 

as the motion of a liquid, i. e . , ignoring the change of volume and compressibility.

Depending upon the condition, the order of magnitude of pressure differentials 

arising in a flow changes from pu^/2 the value of dynamic impact according to Bernoulli's 1
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formula, to puc, where c is the speed of sound, u Is the speed of motion and p is gas 

density. Gas pressure is approximately equal to p  o2.

If we juxtapose the expressions, we see that at subsonic velocities the pressure 

differentials are small as compared with pressure proper and, consequently, we may 

therefore, as a rule, Ignore the compressibility of the medium.

Following is a definition of the scope of gas dynamics. Gas dynamics is  the 

science of motion at great pressure differentials and high velocities, velocity being 

measured in term s of the speed of sound.

In sim ilarity theory we have the following ratio between motion and speed of sound:

u/c = Ba

where Ba is known as the Bar stow criterion.

Gas dynamics studies motion and Ba values close to unity. If Ba is considerably 

sm aller than 1, the general equation of gas dynamics becomes those of hydrodynamics of 

an incompressible liquid.

It will be assumed in the following that laws of hydrodynamics of an incompressible 

liquid are known, and we shall therefore not dwell on the derivation of the corresponding 

formulas.

To take account of compressibility means .list one also has to take account of the 

change in the state of the medium. In hydrodynamics the action of dissipative forces

(viscosity) leads to a release of heat in the liquid and to a change in its tem perature, but
>

it does not lead to a change in volume: the changes within the liquid have no inverse 

effect on the nature of the flow and have little importance for the phenomena investi

gated in hydrodynamics.

In gas dynamics, instead, we shall continuously deal with changes in the state of 

the medium in the flow proper. This aspect of gas dynamics requires that any and all 

phenomena be also Investigated from a thermal dynamic point of view; thus, thermody

namics is  totally indispensable for the study of gas dynamics
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In the present book we shall deal only with specific phenomena of gas dynamics,

i. e . , such that have no analogies in the mechanics of an Incompressible liquid. We 

shall not dwell on those subjects in which gas dynamics and the consideration of com

pressibility give only slight correction for the conventional formulas of hydrodynamics 

of an incompressible liquid. The emphasis in the present book will be on the careful 

definition of the fundamentals of gas dynamics, of the fundamental laws, and of the methods 

for solving the simplest problems, rather than on the computational methods of gas 

dynamics, the methods of numerical integration of complex two- and three-dimensional 

flows, etc. We shall proceed here from the simple to the complex, rather than from 

general problems to particular ones. Instead of writing first the equations of gas dy

namics in their most general form (taking into consideration all the factors), searching 

for general solutions and then, by simplifying these solutions, going on to the particular 

solution of simple cases, we shall solve simple, elementary problems that describe 

certain aspects of some phenomena, and then, by means of these individual partial 

solutions piece together the solution of more complex problems.

We can outline the following, fundamental fields of application of gas dynamics.

The first, which today is  the better known and more developed one, comprises problems 

of flow around bodies moving at great speeds. This Involves, first of all, the correc

tions in ordinary formulas of resistance and lift for bodies moving at subsonic speeds,

i. e . , corrections that are already applicable to contemporary aviation. A radical 

change in flow around bodies occurs when we deal with velocities exceeding the speed 

of sound. These speeds are involved in ballistics, i. e . , die science of the motion of 

m issiles and projectiles, and also in the study of rocket aircraft of the near future.

This application of gas dynamics to die problem of the motion of a body in a gas 

at speeds of the order of the speed of sound or exceeding it is dealt wtth in detail in 

text books, hence we snail deal with it only marginally here.

The second, extremely important field is that of the motion of a gas in ducts, such 3
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as nozzles and pipes. Again, gas dynamics becomes Indispensable if and when the 

velocity of the gas attains o r exceeds the speed of sound. In this field, the nature of 

the flow, and the dependence of velocity and flow rate oa pressure drop, a re  subject to 

qualitative changes. This group of problems is of great significance for the theory of 

turbines, jet engines and m issiles.

A peculiar field of gas dynamics based on the consideration of the compressibility 

of the moving medium is  the teaching on sound — acoustics. The velocity of the medium 

and the amplitude of pressure changes under the effect of sound are very small. Never

theless, consideration of compressibility becomes indispensable when studying the initial 

stages of any motion, and when studying rapidly changing, especially periodical motion.

Shock waves are of particular interest from various points of view, and they will 

be one of the main subjects of the present bode. On the one hand, wherever the attempts 

of integrating equations without introducing discontinuities (i. e . , shock waves) lead to 

paradoxes which make it  impossible to solve these equations, the theory of shock waves 

eliminates the paradoxes and makes it possible to design a regime of motion under any 

conditions.

On tiie other hand, the shock waves themselves are a paradoxical phenomenon. 

They are paradoxical in that, without introducing any assumptions regarding dissipative 

forces (viscosity and therm al conductivity), from elementary considerations we can 

derive shock wave laws which include the increase in entropy, i. e . , laws which in

clude the irreversibility of the processes occurring in shock waves.

From this point of view shock waves afford a considerable logical and scientific 

Interest, irrespective of their application.

It is  worth noting that a ll basic relations and fundamental concepts have been 

established from the study of the general equations of gas dynamics some 50 years ago, 

at a  time, that is, when there existed no experimental material, and long before shock 

waves were investigated by researchers.

As Emile Jouguet once said in a very poignant figure of speech, "the shock waves
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first appeared on the point of the pen of a theoretician."

We cannot but marvel at the keen analysis and theoretizing power of the great minds 

of the past century, firs t of all of the German mathematician Bernhard Riemann, the 

English physicist fcuiklne and the French a rtille rist Hugoniot; from different approaches 

and independently of one another they have created the theory of shock waves which, to 

this day, has not lost its significance.

Finally, the Interest in shock waves has increased over recent years in connection 

with the problem of the destructive effect of explosions and the propagation of the ex

plosion on the explosive substance (capable of chemical reaction). It is necessary to 

know exactly the condition of the substance compressed by the shock wave, the rate of 

compression and sim ilar properties of the wave. The present book is an introduction 

to the theory of explosions.

It is the author's pleasant duty to express his gratitude to Prof. N. N. Andreyev,

B. P. Konstantinov, L. D. Landau, M. A. Sadovsldy, O. M. Todes and Yu, B. Khariton 

for going over his manuscript and giving valuable advice.

Literature: Popular introduction to hydrodynamics [22];* some general manuals 

on gas dynamics [4, 23, 23, 27, 39, 106]. * 5

*
Figures in brackets correspond to the numbers of die bibliography.
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Chapter 1 

Gas Dynamics Equations

We set up gas dynamics equations and neglect the effect of the force of gravity 

and also (see below) that of viscosity and therm al conductivity. For the sake of sim

plicity we shall write the equation for the one-dimensional case; generalization to 

two and three-dimensional cases will then not be difficult.

We begin with die continunity equation, i. e . , the equation that expresses the law 

of conservation of matter.

We denote, as usual, by d/dt the substantial derivative in time, i. e . , the deri

vative taken for the given particle along its  path, and by a/g t the local derivative ir 

time which characterizes the change of the studied quantities at the given point in 

space, and write

(1- 1)

or

Both formulas are, of course, completely equivalent. To derive the first formula we 

observe the motion of the layer of m atter that comprises a constant amount of that 

m atter. The second formula is  derived by observing the change in density at die given 

point in space.

The equation of motion does not differ from the equation of motion for incom

pressible fluids:

•  $  — (1-3)

Finally, the third equation is substantially new; it represents a characteristic 

feature of gas dynamics. This is  the equation of die change of state.

In the hydromechanics of incompressible fluids we added the incompressibility 

equation p = ooost to die firs t two equations. How do we find the relation between 

density and pressure in a compressible fluid? 6
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Density, pressure and temperature of a fluid are connected by an equation known 

as the equation of state. If we know the thermal capacity, we can connect temperature 

with energy. To determine the connection between density and pressure, we must set 

up another equation — the equation of energy of a fluid in motion. In the absence of dissi

pative forces (viscosity and thermal conductivity) we have

j p __ _j_ t f ____  . V91_(1-4)^
** P°°t & P dt~~ P dt *

where v is specific volume, a quantity inverse to density p.

The energy of any element of matter under investigation can only change on 

account of the work of compression that is being performed on it by the surrounding 

volumes of the fluid (gas).

Bearing in mind the fundamental thermodynamics equation

d £ = T d S -Pdv, (I“5)2

from the energy equation we readily obtain for the studied case of the absence of 

dissipative forces the natural conclusion

TdS— Q; § = 0. (1- 6)

In other words, the state of m atter changes according to the adiabatic curve, it 

changes with constant entropy.

As is known, for an ideal gas with constant therm al capacity, the adiabatic 

equation is

P = A q\  (1-7)

where k = Cp/cy, k -  const. It can also be found without considering entropy, and it 

was found that way in 1818 by Poisson who integrated Eq. (1-4), in which for an ideal 

gas we substitute Clapeyron’s law

£ = c , T = jjrR T =  jfPv, dE— ^pdv-*-~vdp, (1- 8)

Which are the conditions of applicability of the above equations'* in which the effect 

of viscosity and thermal conductivity was disregarded? It is  obvious, in the first place, 

that In order to apply these equations the Reynolds and Peclet numbers must be high.
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As is  known from sim ilarity theory and hydrodynamics of an Incompressible fluid, the 

Reynolds number characteiizes the relation of inertia and viscosity. The Peclet number 

plays an analogous role in that it characterizes the relation of molar heat transfer of a 

flowing fluid and the heat flows transferred by molecular thermal conductivity.

Thus, a high Reynolds number means that one may disregard viscosity in gas 

dynamics equations.- A high Peclet number means that thermal conductivity may be 

ignored; it means that along the flow line motion takes place virtually adiabatically.

From tiie molecular-kinetic theory it follows that in gases the ratio of therm al con

duction to volume thermal capacity (known as thermal diffusivity) is approximately equal to 

the viscosity to density ratio (known as kinematic viscosity). For this reason in a 

gas flow the Reynolds number is quite close to the Peclet number, and both conditions 

(namely, a high Reynolds number and a high Peclet number) coincide.

Following Kansan we can give a different formulation to the condition of a high 

Reynolds number. We use the molecular expression for the viscosity coefficient

where I Is the length of the free path of the molecules in the gas, c* is the velocity of 

molecules, a quantity equal in magnitude to the speed of sound, and v  is  kinematic

If we substitute the expression for viscosity into the Reynolds number formula, 

we get

where d if. the characteristic size, U is the chatacteristic velocity of the motion In

vestigated.

Hie relation between the speed of motion and the speed of sound is  known as the 

Bar stow criterion

(1- 9)

2
viscosity (cm /sec).

a-io )

d -11)

In the field of dynamics interesting us, where the speed of motion is  of the 8
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same order of magnitude as the speed of sound Ba ~  1, the Reynolds number turns out to 

be of the same order of magnitude as the ratio of die dimensions of system d to the 

length of die molecule path 1.

The condition stated above according to which Rc and according to which it 

is possible to ignore dissipation forces (viscosity and thermal conduction), leads to die 

requirement that the dimensions of the system be considerably greater than the length 

of the free path of molecules.

We see further, however, that the fulfillment of that condition, i. e . , a system 

of large size, does in reality not always ensure small dissipation forces and the possibilit 

of studying adiabatic processes only. We shall see in die following that in the presence 

of shock waves in a flow there occur exceedingly large gradients of all the quantities 

studied; the magitude of these gradients does no longer depend upon the dimension of 

the system, and also does not drop as the dimensions of the system increase. In these 

cases, we will have to consider the possibility of changing entropy no m atter how large 

the Reynolds number is.

Generally speaking, the possibility of an increase in entropy does, in principle, de

pend upon the dissipation forces; all the observed large-size properties of the flow, how

ever. and, specifically, the numerical value of entropy increase in a shock wave, do not 

depend upon the magnitude of viscosity and thermal conductivity (they are self-modeling 

with respect to thermal conductivity and viscosity); the laws of die change of state in a 

shock wave can thus be derived without investigating the structure of its front from the 

equations of conservation of m atter, the amount of motion and energy, applied to the 

states prior and after the passage of the wave.

In the case of high Reynolds cumbers, we could expect a considerable effect of 

turbulence. In m atter of fact, however, studies of the simultaneous effect of turbu

lence and extremely high (of the order of the speed of sound) velocities are very few.

To some extent, this lack appears to be due to the complexity of such a comparatively
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far-out field. On the other hand, in most typical problems of gas dynamics we are faced 

with short pipes and nozzles, short bodies to be flowed around; in a short pipe turbulence 

has no time to develop, even if the He number is high. Finally, in the hydrodynamics of 

small velocities, with Ba < 1, the formation of eddies and turbulence is  the only resistance 

mechanism for R e ^ l; their consideration is absolutely neeessmy for studying the forces 

affecting a body moving in <t fluid. In the case of supersonic speeds there occurs what is 

known as wave resistance and die possibility of irreversible dissipation of energy in 

steady-state shock waves; a resistance different from 0 may be found also without studying 

turbulence.

Appendix

In order to determine the applicability of Eq. (1-1) -  (i-6), let us take the general 

form of gas dynamic equations (see, for instance, (23, 2?]).

The equation of motion has the form:

(1- 12)>1* 
' bis dm i*

where die quantities X, Y, 2 are  components of volumetric force applied to a unit of mass, 

and die quantities Tn , T ^ , and so forth, a re  components of the tensor of stresses due 

to the effect of viscosity. The effect of viscosity depends on the relative motion of neigh

boring fluid particles. From the conditions of tensor symmetry, confining ourselves to 

term s proporttoml to the firs t derivatives of velocity with respect to the coordinate, 

taking die invariant sum of normal stresses on three mutually perpendicular platforms 

to be equalled to the three-fold pressure, and Isolating pressure from die stress tensor, 

as tills already has been done in formula (1- 12), we arrive at the following expression for 

the stress tensor:

The equations of motion with respect to the two other coordinates are found from (1-12) 

and (1-13) by a cyclic shifting of indices.
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The coefficients In (1-13) have been chosen such that

TJU-*-Tft-*-T„=0. A ll

In the one-dimensional case

at = u ( x \  u# =  u# =  0, £ = 4 l - = 0  B ll

and the equation of motion (1- 12) can be simplified to

If viscosity and thermal conduction are taken into consideration, additional term s 

appear also in the equation of energy: in the general case of three-dimensional motion 

(X is thermal conduction)

tf —--------Jt---------- =  6(uMX-*-u0 r-i-u ,Z ) —

—Tju.ip-i- Tt f -+-u, r j — ̂ [u #(. -..)-«*•*.I —

» r ,  .  . 1 £ l  * y iT* i°,(— )-*••••] ix  ~*~d3 l  d9  ** * it* a-is)

We remind the reader that T without indices is absolute temperature. By using the con

tinuity equation, the equations of motion in the form (1- 12) and the thermodynamic re

lation dE = -  pdv + TdS, we can transform  (1-15) to the following form:

«r " = - T- % ~  r , £ - r „ £ —
T  ^a* T  7* T  . i  ] i f
' i ' l l  '«< »  l **~4s '« < !

. * * . a r
(H6)

a-ie )

By substituting the expressions (1-13) of the components of the tensor of viscous stresses, 

we reduce die expression for the work performed by viscosity, irreversibly trans

forming itself into heat in (1-16), to a form which shows that this quantity is essentially 

positive:

11
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a-w )

In the m m  of one-dimensional motion

Jl %*L

We introduce the dimensionless variables: coordinates referred to the characteristic 

dimension cl system d, velocity referred to the characteristic velocity (mean velocity 

o r velocity in term s of a random but definite point of the system) U, and time referred 

to the quantity d/U. We denote the dimensionless variables with a prime:

x'=*/«/; u'= ulUf t —iU}d. (1-19)

We refer entropy to therm al conductivity of the gas: S' = S/Cp. If we switch to the 

dimensionless variables, we find:

dm,'_X i 1 ip »i (4 r*«' . dn i
|y  J-*~  * */»

*  ' dS '_qU* n fr/da,' \ . n

907? * f r  J I T  A? ^

The external forces are  comprised in file dimensionless equations as term s multiplied 

by a characteristic dimension. They can be disregarded if the motion occurs at a 

high speed in term s of time but is not exceedingly long in term s of space; the study of the motions 

of a compressible fluid in the field of gravity is  the subject of dynamic meteorology and will not 

be touched upon in tfaisbook. The term s which describe the effect of viscosity and thermal

conductivity according to the statement on page 9 (7)-(8) have the coefficients
_»___1 . 1 _  1and (1- 21)

l a» r . l *T l M
}• (1—20)

where Re and Pe are the Reynolds number and the Peclet number.

The assumption according to which the invariant sum of normal stresses on three

mutually perpendicular platforms is  not different from threefold pressure contains

certain arbitrary elements. Of course, we can always determine pressure p precisely

in that fashion, namely, as one-third of the sum of three normal stresses, but in lurtual

fact we are taking a further step and make a physical assumption according to which

pressure so determined for a given state of m atter (definable by its  composition, density,

energy, entropy and temperature) does not differ in magnitude from pressure
12



Pct measured under static conditions in a motionless gas. However, with the require

ment of invariantness of the physical laws with respect to the transformation of coordinates 

we can readily associate the more general assumption according to which the invariant 

sum of stresses depends on the invariant consisting of derivatives from velocity components 

with respect to the coordinates. Such an invariant is the expression for velocity diver

gence

divu= - I
*9

6at

Assuming that we can confine ourselves to the highest term (as this has already been done 

when setting up the expression for viscous stresses) we get

P=P„ (P. £ )o fd iv u . (1-22)

For a complete characteristic of the behavior of m atter it is  therefore necessary to 

assign two independent viscosity coefficients T) and &

In its most general form compatible with the invariantness of the equations, the 

expression for the tensor stresses is

where f)' is the magnitude of dimensionality of viscosity which, as i), must be determined 

experimentally.

Assuming arbitrarily that 17* = T). 2/3, we got (1-13). In the general case, without 

making this assumption, we obtain from (1-23) and (1-22)

-3 f= 3 i/-2 i |.  <I"23a>

The molecular kinetic theory readily describes and computes the first viscosity 

coefficient (T)), which is equally essential in the presence or in the absence of com

pressibility. The quantity is introduced on account of a "cut-off' stress in the flow, 

in which u^ = uz = 0, ux = a + by. This stress is due to an exchange in motion between 

the layers which slide one on top of the other with a different velocity on account of the 

chaotic transverse motion of molecules from one layer into the other. On die basis of 

these considerations, considering the layers which are at a distance equalling the length
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of the free path 1, so that the average velocity (the velocity of mass motion u^) differs 

by the quantity (Su^/By) 1, calculating the number of molecules passing during a time 

unit from tee  layer to the other, and the amount of motion carried with them, we readily 

find [see (1-9)].

where n is the number of molecules in a volume unit, m is the mass of an individual 

molecule, o’ 1b the rate of molecule motion.

Which is the significance of the second viscosity coefficient £? £ is  a factor 

for the quantity div u, which by the continuity equation is identically connected with die 

rate of density change of a substance:

Thus, £ describes the dependence of pressure upon the rate of change in density, i. e . , 

it describes die fact that when the volume changes the static vahie of pressure is not 

determined immediately. The case where the second viscosity coefficient $ is  of the 

same order of magnitude as T) needs no particular explanation: such a case corresponds 

to the determination of static pressure of die same order of magnitude as the time of 

free path of molecules between two collisions, tic.

There are some cases, however, in which abnormally high values of £ are 

encountered.

In Chapter 2 we shall investigate in detail the extremely important example of 

the molecular mechanism of a sim ilar behavior of matter: in the presence of internal 

degrees of freedom which yield additional therm al conductivity and are  excitable at 

a comparatively slow rate, pressure at a given density and a given energy cf the gas 

depends upon the degree cf excitation of the internal stages of freedom. In the case 

of compression (increased energy) preseut j  is  somewhat greater, in the case of rapid 

expansion it is somewhat sm aller than the static values (which corresponds to 

equilibrium excitation). The effect of this phenomenon with slow processes can be 

described by formula (1- 22); the more difficult it is to excite the internal degrees

• —ncfm -^ /—cc7—*; i?~pc7, (1-24)

(1-25)
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of freedom, and the longer their time of relaxation, die more noticeable is the effect 

under study at slower rates of change of state, and the larger will be the second viscosity 

coefficient §.

However, in the case of fast processes conditions are  attained according to which 

the use of linear formulas (1-22, 23) is already inadmissible since the time for a change 

in stt.te becomes comparable to or even sm aller than the time of relaxation of the internal 

degreeb of freedom. It is  necessary to introduce u e  energy of excitation of the in te r nal 

degrees of freedom in its explicit form and find its dependence on time by solving 'die 

differential equation of the kinetics of established equilibrium without the simplifying 

assumption (admissible only in the case of a slow rate of change in parameters) according 

to which the deviation from equilibrium is proportional to the rat# of param eter variation. 

These problems are investigated in Chapter II (acoustic e) and Chapter XIII (shock waves 

in a gas with delayed excitation). Treatment of the second viscosity coefficient has been 

performed by Leontovich and Mandel'shtam [16, 17).
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Chapter 2

Principles of Acoustics. The Speed of Sound

In the introduction as well as in the preceding Chapter we have several tim es re

ferred to a characteristic value of velocity, namely, the speed of sound. As we study 

the propagation of small turbulences, we shall show how from the equations of gas dynamics 

we obtain, at the lim it, the equations of acoustics, and how in the equations of gas dyna

mics is comprised the speed of sound.

We transform the equations of gas dynamics given above taking the rate of motion u 

and the change in density to be small. The rate of motion is taken to be small as com

pared with the speed of sound, u /c < < 1, and the changes in density and pressure are

taken to be small as compared with the mean values of density and pressure, ~  1.
• /*

The fluctuations of temperature in the wave in the gas are of the same order.

Furthermore, in the equations of motion we ignore the term s of an order higher 

than the first one in the expansion of the equation of state of m atter by powers of Aq or 

Ap (they refer to die left out ones such as Ap'p); we also disregard u2 as compared with 

uc ( the ratio of eliminated term s to the remaining ones is equal to u/c).

The values of the amplitude of pressure in a sound of a certain intensity, given below, 

show irrefutably that these omissions are fully permissible in acoustics.

Density is written as follows:

0 =<?•+*. (H-l)

where ?•,initial density, is taken to be a constant quantity, and die change in density «,

connected with the propagation of sound or, generally, perturbations (turbulence) in the #
gas, we take to be a small quantity.

The equation of conservation of matter can be rewritten in the following form:

7F“Ha £.-♦* Cfc-*- * ) £ —a <n- 2)
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If we disregard quantities of a higher order of smallness, i. e . , the products of two

small quantities, we get

h  „ dm

(n-3)

If we disregard. In the same fashion, term s of a higher order of smallness in the 

equation of motion, we get

dm  i p _ dp d p   dp da
i t  i i  dp dx dp dx' <n-4)

By differentiating the equation of conservation of m atter with respect to time, and 

the equation of motion with respect to the coordinate, we obtain a final fundamental 

acoustics equation:

We write

_dp d*a
4/a' eg djfl

i t  — c* 
*9 *•

(n-5)

(II-5a)

and see that this equation may have two groups of solutions: a first group

8 = e ( x — cl)i e — e ( x — cl)i u — u(x— ct)i
P—P \x—ci),

(H-6)

and a second group

€=--d(j:-:-cOi Q = q(x  i-cl); u— u(x- tc i) ;  (U-6a)
> = /» ( x h - c/),

which differs from the first in that under the function sign there is x + ct, instead of 

x -  ct, everywhere. Weunderstandc to be everywhere the positive root of ~ . • — V * -  

The first group of solutions in which all the quantities depend upon the combination 

x -  ct, represents turbulance which expands toward the right, i .e . , in the direction of in

creasing values of the coordinate x. In fact, if at an instant there occurred a certain
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state (<?„ Pi, uj) a t a point x ^  then at the following instant t2 this same state will occur at 

that point where the variable x  -c t (upon which depend all the quantities Pi> p,, a, of die 

solution under investigation) has the same value

xi ~ c*t—xi (n-7)

Xt — Xf* cfo— 4 ). (n-8)

The assigned state propagates in the direction of increasing x at a velocity c, q. e. d.

By substituting this type of solution into the fundamental equations, we can readily 

find for this wave from (H-3)3a

(H-9)

where the prime denotes the differentiation of function (11*6) with respect to the variable 

x -  ct. If we assume at high values of x, i. e . , way ahead in an unperturbed (nontuxbuleut) 

gas, u -  0, C -  0, and we find for a wave propagating to the right.

«==*
(n-io)

The instant pressure value is also linearly connected with density and velocity:

Let us point out specifically that pressure is proportional to the first degree of velocity in 

sound; according to Bernoulli's theorem, in a steady flow we should have a considerably 

sm aller change In pressure:

P—Pt---- p  (11- 12)

Thus we draw ertrem ely important conclusions from formulas HI-10) and HI-11): In a 

wave which propagates to the right, i. e . , in the direction of increasing values of the co

ordinate x, die mass rate of motion u is positive whore die substance is compressed, and
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is negative where the substance is diluted or rarefied and its  density is less than normal.

Likewise, for the second wave in which all the quantities depend upon the combination 

x + ct, that is, for c wave propagating to the left, in the direction of decreasing x, we get

u
(n-i3)

In both cases the velocity of motion is directed towards the direction of wave pro

pagation where the substance is compressed.

If a t an initial instant there is assigned an arbitary distribution of density and an 

a ib itraiy  distribution of velocity of motion in space

/ = 0 ;  Q =  e(x)i « =  £(*)=<?(*) — Ctf u =  u(x), (H-14)

then for foe two waves looked for: the first<1=;e1(x—c/), ua =  u1(x—cf) and foe second 

e,= (x ct), ut = u i [x-i-ct), we obtain two equations

«1(x)-4-«a(x )= o(jf)—^=e(xX  (n-15)

(11-16)

The second equation, (Q-16), is obtained by applying (H-10) to ^  and Uj, and (11-13) 

to c2 and Ug. Then we immediately obtain

»,(x— c f)= - |-e (x —ct)-t- — ct);

tt,(x — c t ) = ^ e ( x — ct)-*-1 u(x —c/h 

€ ,(x-*-ct)=  ^e(x-i-eO — %  u(x-<- cfy, 

B , ( r + c / ) = - ^ t ( x - » - c O  +  - u ( x H - 4

It is not difficult also to study foe reflection of an arbitrary perturbation from a 

motionless (stationary) wall. To find a solution for foe propagating perturbation 

f, (a — «•/), (i, (x—»./), weaddawave which seemingly arrives from foe other side of foe wall 

and propagates in foe inverse direction, that is, a counterwave ea(x • ct), uz{x-*-ct).
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The form of function ^  Is determined from the condition of Impermeability of the 

reflecting wall u = 0 for x = x ^ , whence

ui (* c r, i) I u , (* « „  0 = o . ( 11- 1 8 )

and If we apply (II-10) and (11-13) we find

®l(Xrr» 0  — tyt

ei (x.i)^=st (x ^ci)=:e,(xc,. [ / -  ^ ~ J )  =  

= e, (jfCT. — — —  j )  =  *, {x—a) =

I=*» (x» f — 2 ~ p ~ )»

(n -i9)

(n -20)

"*(*»<)— — «i (■*;< — 2 — — )• (H-20a)

As should have been expected, density and velocity In the reflected wave (index 2) 

at the given point at the given instant of time depend upon the values of density and 

velocity in the dropping wave at this same point at an earlier instant of time, the interval 

being equal to the time required for covering the distance from the given point to the re

flecting surface and back at the speed of sound.

Figure 1 shows the transformation of the assigned instant into the initial instant of 

an arbitrary distribution of density and velocity into two waves which move in opposing 

directions, and the reflection of one of them fay a stationary (motionless) wall; We select, 

as an instant, an Initial condition in which in a certain region there is an increased pressure, 

but otherwise the substance is at rest everywhere.

The consecutive series of graphsae6a, a, &„ a, 6,,..- , corresponds to the instants 

1= 0, /= < !,.••  Graphs a represent the instant distribution of density (tire abscissa axis 

e=Qt), and graphs b show the distribution of velocity (abscissa axis u = 0).

Hie theory of the propagation of spherical waves in three-dimensional space is nearly 

as simple as the one-dimensional theory, as given in equations (H—1)—(n—20). The coordinate
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x will be replaced now by r, the radius, i. e . , the distance measured from the symmetry 

center of motion. We Investigate only spherical-symmetric rartions in which each quantity 

(velocity, density and pressure) depends only on time and on the distance r  from the sym

metry center and is constant on the sphere of radius r , i. e . , does not depend on the radius- 

vector angle drawn from the symmetry center with the coordinate axes. The motion of gas 

particles occurs only along die radii plotted from the symmetry center. For this reason 

there is no need to use vectorial designations.

Fig. 1. Propagation 
and reflection of a 
rectilinear pressure 
pulse along one co
ordinate in linear 

acoustics.

4
The equation of conservation of matter takes the form



Hie equation of motion does not change:

im_ dp_ ip ig

.* <n-22>
=  _ C V

By means of simple transformations we find

A _6* i  mit_
i?~ ~ ^irr irm

In this form the equation differs from the simple equation (II-5).

(11-23)

We substitute

(H-24)

Then, for function 7), we obtain after appropriate reductions the wave equation for 

one-dimensional motion

A
Sfl

the solutions for which are already known

(H-25)

«0 **-*?«(*'•*• f0» (H-26)

Thus, the general solution for the amplitude of change of density in a spherical 

wave takes the following form:

• =  »>i(r ~  c<> | »h(r > c0 , 
r r (11-27)

By substituting expression (H-27) into Eq. (IE-23), we can readily see that it 

satisfies the equation for arbitrary functions 1)y  1?2. The firs t highly important dif

ference between spherical waves and plane waves (i. e . , one-dimensional waves in which 

all the quantities depend only on one coordinate x, (see above)) consists in that the wave 

amplitude during propagation from the center drops in an inversely proportional fashion to 

the distance from the center, see (11-27); the amplitude of a wave converging toward the
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center increases according to the same law. A drop in amplitude as the wave moves away 

from the center is perfectly natural; let us take a function such that it be different from 

zero only within a given interval of the change of quantity r — ct, a ^ r —c t^ b .  This means 

that only the substance comprised in the spherical layer of constant thickness b—a, a-t- 

ct < r < a  i-ct-*-(b — a), is turbulent, Involved in wave motion at any instant of time. As r 

increases with increasing time, the amount of substance involved in the motion increases 

proportionally to the layer volume, i. e . , proportionally to r 2.

The sound energy of a volume unit is proportional to the square of the amplitude.

Thus, in the absence of absorption (the transformation of sound energy into therm al energy)
2 2 -1the law of m atter conservation leads to condition C r  = const, r  , i. e . , to a decrease 

in the amplitude in accordance with the law mentioned above.

The second difference between spherical waves and plane waves consists in that the 

simple expression (11-27) is true for the amplitude of change in density and pressure, but 

not for velocity. Pressure and density are related by Poisson's adiabatic equation; for small 

amplitudes this yields

Jfe— C«)=*5|

which is exactly the same as in a plane wave. However, the simple proportionality of the 

speed of motion and density or pressure does not take place in the case of spherical waves 

(see Eq. (11-10)).

Let us substitute into (H-22) the expression of density in a spherical wave moving 

away from the center

* —Th (r —e$ r*

Then we find

* •_ •* /Vi (''—*#) ih (r— d)\
H ------ *V---- r------------ 7*— )'
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In the expression for velocity there appears an additional term  which disrupts the 

simple proportionality of (H-10) which takes place in the propagation of plane waves. This 

fact leads to significant consequences which were first noted by Stokes.

Let us investigate a wave of finite width, which moves in a specific direction, namely, 

towards increasing coordinates; after the passage of the wave, the substance returns to its 

initial values of density, and then rests.

In the case of a plane wave, the dependence of density on the coordinate inside the wave 

(inside the region of turbulence) is not subject to any restrictions; owing to the simple re

lation (II-10), at the point where density returns to its initial value, velocity likewise be

comes zero.

However, in the spherical case, condition « = 0 is not sufficient: In order that velocity 

become zero after the passage of the wave, it is necessary that also the second term  in 

(ff-28) become zero

^ ^ = 0; J l , ( ! ) < $ = J r £ d r = 0.
(11-29)

The integral in (11-29) is  taken with respect to the entire width of the wave, i. e . , 

with respect to the entire region in which ( ^ 0. In formula (11-29) we can see that In a 

spherical wave with a finite width the change in density is bound to occur with changing 

signs: the integral in (11-29) will become zero only if in (me of die portions of the integration 

region c is  positive and in the other it is  negative. The same applies also to a change in 

pressure in the wave owing to a linear relation between small changes in density and 

pressure.
0

How can we represent in an elementary fashion the impossibility for a spherical

wave of finite width to have compressed m atter over its  entire amplitude, and the causes
5 cfor it ? The additional amount of m atter comprised in the wave is equal to I £ r-Jr.

Amplitude ( drops as r”1; thus, the additional amount of m atter in a wave, in which ( > 0

everywhere, must increase proportionally to r  as the wave propagates. It is the amount of

matter that increases as the wave of higher density propagates which causes a wave of lower

density to follow i t .
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A closer examination reveals that on the borders of the wave, i. e . , where both u and 

c are very small, the quantity C is even sm aller so that the relation between u and ( within 

the boundaries of the borders of the wave is the same as in a plane wave. Finally, it can be 

shown that not only a change in density but also the speed of motion u must change its sign 

inside the wave: there can be no spherical wave of finite width over the entire extension 

of which the substance would be moving in the direction of increasing radius. Inside the 

wave, however, the point at which the sign changes is somewhat shifted toward the symmetry 

center as compared with the point at which the sign of € changes (Fig. 2).

Fig. 2. Distribution of density 
and velocity in a spherical wave.

All this is of the greatest importance for the theory of the propagation of waves caused 

by an explosion, with which we shall deal in the last Chapter of this monograph.

In order to characterize the absolute values of pressure and velocities with which 

we have to deal in acoustics, let us give a few figures. Loudness is measured on a 

logarithmic scale ir decibels (after the name of the inventor of die telephone, Graham Bell).

An increase in loudness by n decibels (abbreviated db) means that the sound intensity increases 

IQn/lO g me8. corresponds to an increase in the amplitude of pressure, density and velocity 

by lO11̂ 20 tim es. Zero corresponds to the sensitivity threshold of the ear of an average person. 

The rustle of leaves, or whispering have a loudness of approximately 10 db, an orchestra 

playing fortissimo approximately 80 db (the sound intensity is 10, 000,000 times greater).

An extremely loud sound of 130 db produces in the air a change in density up to 0.4%, which 

corresponds to a pressure amplitude/* — —0A% • 1 . 4 0.56%, pt =  56. .m of the water
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column. The amplitude of the speed of motion of a ir particles attains 0.4% of the speed of 

sound, i. e . , 1.3 m /sec. The amplitude of particle displacement amounts to x —jt» =

. 0.4°/»=0.C(P/4 /t, i. e . , 0.06°/* of the sound wavelength p, about 0.030 cm for a sound 

with a frequency of 500 Hertz. Radiation energy equals G. 1 w/cm . Sound travels 330 m 

during m 1 sec, so that the sound energy of a volume unit at a loudness of 130 db amounts 

to 0.1/330 • 100 w • sec/cm2 • cm = 3 • 10~6 j/cm® = 0.7* 10® cal/cm®.

We point out as a comparison that the therm al energy of a ir under normal conditions
o e

amounts to 0.07 cal/cm  , that is, 10 times greater.

Thus, not only whispering but also the fortissimo of an orchestra or the roar of a lion 

represent a very small shift and change in the state of the air.

The sounds perceptible to the human ear have a frequency between 20 and 20,000 

Hertz (oscillations per second), i. e . , a wave length from 15 m to 1.5 cm.

The speed of sound is defined by formula (II-5a).

Sir Isaac Newton in 1687 was the first to compute the absolute value of the speed of

sound from the values of elasticity and density of a ir already known at the time, and showed

the independence of the speed of sound from its amplitude and frequency. Taking the Boyle-
constMariotte law for the relation between pressure and density const, p =  —̂ ~ =  

const o npu T  =  const, Newton found

Direct measurements soon showed, however, that Hie speed of sound in the a ir 

is almost 20% higher than Hie value computed by Newton. It was Laplace who explained 

this discrepancy in the following way: In a sound wave compression and rarefaction occur 

adiabatically, according to Poisson's adiabatic curve. Heating during compression and 

cooling during expansion enhance Hie changes in pressure in a sound wave, and increase its 

velocity

26



(n -3i)

where k =- c / c  P v
We bring here a table compiled by Richardson in 1939 [80] in which are Juxtaposed 

the values of the speed of sound (in meters per second) in various media, measured ex

perimentally and computed from the isothermic and adiabatic compressibility.

Table 1

Substance State T°K c observed c computed k
(m/ sec) (m/ sec)

abiabatic isothermic

Argon Gas 303.1 324.0 324.2 251.2 1.667
Nitrogen Gas 273.1 337.3 336.7 284.5 1.400
Benzol Fluid 293.1 1324 1319 1095 1.450
Teluin Fluid 293.1 1328 1317 1138 1.340
c c i4 Fluid 293.1 935 931 774 1.46
Water Fluid 277 1407.0 — 1.000*
Water Fluid 313 1530.3 — — 1.026

*
At 4°C, maxium density of water.

The excellent agreement with Laplace's formula proves that the change of state in a 

wave is strictly adiabatic. From the speed of sound Laplace found the thermal conductivity 

of air with constant pressure and with constant volume. Meyer ascribed the difference be

tween 0^ and Cy of the a ir to the work performed by the air when it expands with heating and 

with constant pressure. Proceeding from these considerations and from quite imprecise 

experimental data, Meyer approached for the first time the definition of the relationship 

mechanical work and heal, the "mechanical heat equivalent", the numerical basis of the 

law of energy conservation. Only later, under Meyer's influence. Joule performed, direct 

experiments which confirmed the transformation of work into heat; he also found a more 

accurate vahie for the equivalent. Proceeding from the measurements of the speed of sound.
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Rankine computed the thermal conductivity of a ir in 1850, three years before the exact 

measurements by Ren'o (Reignaud??).

Particular mention should be made of the considerable difference between isothermic 

&uu adiabatic speeds of sound in a number of fluids. In this case the difference between 

0^ and 0^ is no longer connected with the performance of work; Instead it is connected with 

the Increase of internal energy, with the overcoming of the cohesion of the fluid molecules 

with thermal expansion under constant pressure.6

Today the method of measuring the speed of sound is completely different from the one 

used at Laplace's times. His contemporaries measured with a chronograph (or a timing 

device) the time during which sound travels a certain distance of several kilometers. At 

nrenent time, instead, one works with short waves of strictly determined frequency me 

d) is measured by an electric circuit. At a given frequency, we will find the speed of 

sound by determining the wavelength fi hr the tested substance by the formula c = fi to.

The wavelength is found by placing in front of the sound radiator a sound-reflecting 

plate which is slowly moved away from the source by means of a micrometric screw.

Sound intensity reaches a maximum each time that the distance between the radiator and 

the reflector is  travelled by an Integral number of half-waves. Another maximum is 

reached at the same time by the consumption of energy by file radiator, recorded by 

electric devices.

Of great significance for physicists and chemists is the principle (thoroughly in

vestigated in recent years) according to which the speed of sound depends on its frequency.

If sound propagates in a gas in which a part oL the degrees of freedom is excited at a 

slower rate, so that the thermal capacity of the gas depends on the rate at which the tem

perature changes, then we have to distinguish two critical regions. In the first region, 

with low vibration frequencies and a comparatively slow change in temperature, complete 

equilibrium has a chance to establish itself while a change in state occurs in the acoustic 

wave, all the degrees of freedom are excited and thermal capacity attains maximum values. 

In file second region, with a sufficiently rapid excitation, i. e . , with a higher sound
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frequency, some internal degrees of freedom have no time to become excited. The change 

of state in the gas occurs a6 if its thermal capacity were smaller.

The expression for the speed of sound in a gas is

(n-31a)

We see from this equation that for maximum values of thermal capacity the adiabatic index 

k has a minimum value, hence we obtain a minimum value for the speed of sound.

Thus, delayed excitation of die internal degrees of freedom, or of any part of thermal 

capacity, results in the dependence of the speed of sound on frequency, i. e . , in dispersion

[50].

In the case of carbon dioxide with a linear molecule (the three atoms O, C, O, are 

alined in equilibrium on a straight line), thermal capacity at room temperature cy is 

3.3 R. This thermal capacity is made up of progressive heat capacity 1.5 R, rotational 

heat capacity R and oscillatory heat capacity 0.8 R, R being the gas constant (R = 1.985 

cal/degrees x mole).

Kneser's [62] measurements have shown that with frequency changing in an interval
g

from 10 l/sec  (10 kH) to 10 l/sec  (1000kH)t the speed of sound changes from 260 m/sec 

to 270 m/sec, or about 4% in accordance with the change of thermal capacity from 3.3 R 

to 2.5 R, and the change of k from 1.3 to 1.4. It follows from these measurements that 

the time for establishing equilibrium in the excitation of oscillations of a COg molecule 

is 10-S sec. Oscillation is usually excited by one of 600,000 collisions, the oscillating
7

molecule releases its energy during one of 50,000 collisions with other molecules.

Analogous phenomena will take place in a system in which additional thermal 

capacity, excited comparatively slowly, is  responsible for some reversible chemical re

actions.

As an example we cite nitrogen dioxide which at room temperature is in equilibrium 

with nitrogen tetroxide

2N0,5±N,04.
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In this case, if compression time exceeds the time of die reversible reaction, we must 

take Into account "chemical heat capacity" which arises from effect disrupted equilibrium 

and the release or absorption of reaction heat with changing pressure and temperature.

At high frequencies, instead, equilibrium "freezes" and the system behaves as a mixture 

of noninert-reacting gases if the conversion of NOg Into NgO^ cannot occur during an 

oscillation period. In 1920 Albert Einstein [50] was the first to develop the theory of 

sound dispersion applicable to these systems.

Simultaneously with sound dispersion, i. e . , the dependence of the speed of sound on 

frequency, there also takes place an appreciable increase in sound absorption.

The mechanism of sound absorption can in this case be readily clarified by axamtning 

how expansion and contraction take place in the plane p, v (Fig. 3). Two adiabatic curves, 

BAB' and CAC', intersect at the initial point A. The first curve corresponds to rapid 

changes of state with a frozen part of thermal capacity, and the second one corresponds 

to slow equilibrium processes. If we rapidly burn the gas, it will change to state B. If we 

hold, with constant volume, die time required to excite the entire heat capacity, we will 

get to point C. In die case of rapid expansion, we will follow line CA\ parallel to BA, and 

only after exposure for s sufficient amount of time we will again get to the initial point.

Thus, the area ABCA' describes the work which, in such a cycle, has been irreversibly 

expended and changed into heat. This work is proportional to the square of die amplitude. 

Here we studied a simplified cycle consisting of rapid changes of state with protracted hold

ing in the interval. The change of state in a sinusoidal sound wave with delayed excitation 

of the internal degrees of freedom is described by ellipse® in the plane p, v. The center of 

the ellipses is the point corresponding to the unperturbed state. Figure 4 shows three such 

ellipses. Ellipse corresponds to low frequency and slow oscillations. Motion is close to 

adiabatic curve CAC' (cfr. Fig. 3). The width of the ellipse, which denotes maximum 

deviation from equilibrium, is  proportional to die rate of change of state, i. e . , it la 

proportional to frequency a). Consequently, also the area of die ellipse, as well as die 

portion of energy irreversibly converted to boat during one oscillation, are proportional
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Fig. 3. Cyclic process in a 
gas with delayed excitation of 
a part of thermal capacity. 
Area ABCA’ determines 

energy losses.

Fig. 4. Change of state with gas 
oscillations at delayed excitation 
of part of thermal capacity.
Oscillations of different frequencies:
1 -  low frequency; 2 -  high frequency; 
3 -  average frequency, oscillation 
period is of the same order of mag
nitude as thermal capacity excitation 
time. Ellipse area and losses per 
one cycle are maximal for average 

frequency.

to (0 , hence sound absorption at a distance equal to wavelength fi is also proportional to

o). Here the behavior of matter can be described by the second viscosity coefficient 

{Chapter 1, Appendix). Sound absorption referred to a unit of time or a unit of length is 

proportional to CO , since oscillation time and wavelength are proportional to 1/co.
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In the second limiting case of extremely rapid oscillations we obtain ellipse 2; the 

energy of the internal degrees of freedom manages to change only by a very small value, 

and the entire ellipse is very close to adiabatic curve BAB'. The width of the ellipse is 

proportional to the amplitude of the change of energy of the internal degrees of freedom, and 

the amplitude, in turn, is proportional to the time during which this energy is accumulated, 

i. e . , it is  proportional to the oscillation period, and also to to-1.

The highest values of energy absorption during one oscillation are obtained with such 

oscillations the period of which is close to the time required for establishing equilibrium, 

i. e . , when sound dispersion is greatest, hi Fig. 4 this case is represented by ellipse 3, 

the width of which is of the same order of magnitude as the distance between the adiabatic 

curves BAB' and CAC1 for maximum pressure amplitude. With slower oscillations the 

change of state approaches equilibrium state, and the losses during the cycle drop like 

b) does. With faster oscillations, the system is nearly all the time far away from die 

equilibrium state, excitation of internal energy occurs irreversibly, but because of the 

rate of die cycle it exceeds die cycle only slightly, and the losses per cycle are  ~  w-1.

In the second region (high frequencies), the losses referred to a unit of time tend 

toward a constant value. If the thermal capacity of the internal degrees of freedom is of 

the same order of magnitude as the entire thermal capacity, sound intensity fades to 1/e 

during a time equivalent to the time required to excite the internal degrees of freedom r.

Maximum absorption and die behavior of matter at these high frequencies in die 

second region, where o>>—, cannot be described by the second viscosity coefficient; 

they require, instead, practical concepts regarding the presence and properties of the 

internal degrees of freedom. A vast literature regarding dispersion and absorption of 

sound has become available over the recent years; in this book we can only refer to die 

thorough review by Richards [80].

In a system which has no delayed excitation of the internal degrees of freedom, the 

fundamental reasons for sound absorption are viscosity and thermal conductivity of die 

substance. The absorption factor on one wavelength (during one oscillation) is
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proportional to the frequency and inversely proportional to the wavelength fi. In the case 

of gases it approaches 1 as an order of magnitudet when the length of the wave approaches 

the length of the molecule path in the gas 1, so that we can write it as l / f i .  This expression 

can be obtained from the exact formulas developed by Stokes [90t 91] and Kirchhoff [61] if we 

substitute into them the molecular-kinetic expression for viscosity (1-9) and thermal 

conductivity of a gas. That sounds with a wavelength smaller than the free path cannot 

propagate is obvious.

The effect of thermal conductivity on the propagation of sou id can be explained by 

examining in the p, v plane the adiabatic and isothermal curves in the same way as we 

have examined two adiabatic curves (with and without excitation of the internal degrees of 

freedom). If compression occurs so rapidly that heat transfer has no chance to take place, 

then the change of state occurs adiabatically; in the case of slow oscillations, we can expect 

an isothermal change of state to take place; the transition will be accompanied by dispersion 

(dependence of velocity on frequency) and sound absorption.

This applies to the case of heat transfer with the outside medium, for instance, when 

sound propagates along a rod or in a gas enclosed in a small tube with heat-conducting walls.

If we are talking about heat transfer in a sinusoidal wave that propagates in an un

limited medium, between sections where the matter is  compressed and heated and such where 

it is rarefied and cold, then we must bear in mind that the time of compression and expansion 

(the period of oscillation) is associated identically with the length of the wave.

The levelling time of the sinusoidal temperature distribution is  proportional to the 

square of the distance, the square of the wavelength, i. e . , the square of compression.

Hence the apparently paradoxical conclusion according to which the signficance of heat

transfer is  the greater, the faster compression occurs, since by accelerating compression
2

n times heat transfer is accelerated even more (n times) and becomes considerably more 

substantial than in the case of slow compression.

Transition to isothermal sound propagation cannot be observed in gases, since that 

transition would occur at wavelengths of the order of magnitude of the free path — where
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the propagation of sound is impossible; in gases, moreover, viscosity always exercises a 

much stronger effect than thermal conductivity.

According to Zener's most recent works [100], the levelling of thermoelastic tem

perature c iferences and the transition to isothermal propagation represent an extremely 

important mechanism of sound absorption in metal with a very high electron thermal con

ductivity. Since in a crystal the thermoelastic properties depend upon its orientation, 

additional losses cccvr in polycrystals.

It is interesting to note that in the case of the reflection by a solid wall of a sound 

that propagates in a gas, the temperature and velocity gradients are considerably greater 

than in a sinusoidal wave propagating in an unlimited space, the ratio is the greater, the 

smaller are viscosity and thermal conductivity, since with decreasing tj and X the depth 

of penetration into die gas created by the turbulence wall also decreases. In mpatxHng 

these concepts, B. P. Konstantinov showed that the absorption of a sound reflected once 

by a Trail is of the order of )//}n (1 being the molecule path, and p is the length of the 

sound wave), 1. e . , it is greater by several orders of magnitude than absorption on a 

wavelength in the case of propagation in unlimited space [13].

Finally, let us mention die peculiar difficulties that arise in the theory of sound 

when examining die second approximation without neglecting compression in the wave 

as opposed to initial density, without neglecting mass velocity of matter motion as 

opposed to die velocity of sound propagation.

In this case it appears that die wave crests, i. e . , the spots where density is maximal, 

propagate faster than the troughs, i. e . , the spots where density is minimal (to the point of 

rarefaction). This happens for two reasons. First, in a compressed gas the speed of 

sound is greater because the gas temperature is higher. Second, die compressed gas has 

also a mass motion moving in the same direction as sound propagation; the velocity of this 

motion has to be added to the velocity of sound propagation. This difficulty, which is 

Implicitly contained in Poisson's studies [75], was first noticed by Stokes in his investigations 

on sound propagation [92].
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We can readily see from Fig. 5 that tne propagating sinusoidal sound wave (a) will 

have to continuously change its nhape.

a -  sinusoidal wave; b -  deformed wave, contains overtones; 
c -  acoutstics equations yielded a solution devoid of physical 
significance, with three values for pressure of velocity at one 
point; in reality, however, c does not occur, shock waves are 
formed, dissipation forces must be calculated.

The portions of pressure increase become shorter and steeper, while the portions
A

of pressure drqj expand (b). Acoustics formulas of the secoi i  approximation lead 

eventually to an absurd wave form (c), where at one and the same point we have three 

different values for density and pressure.

Analysis of this difficulty led Riemann [81] and Rankine [78] to far-reaching con

clusions (see Chapter 7 and ff.)

Fig. 5. Deformation of a sinusoidal sound wave as a function
of propagation
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Chapter 3 

Gas Flow Through Nozzles

Let us now investigate the motion of gas in a duct with varying diameters. We will 

confine ourselves to a one-dimensional study of the phenomenon; we will therefore dis

regard the velocity components directed perpendicularly to the duct's axis, and consider 

all quantities (density, velocity and pressure) to be dependent only on the distance measured 

along the duct, but equal in any normal cross section of the duct and independent of time.

We write for the entire flow the equation of conservation of matter, which, in the case 

of steady flow interesting us, leads to the simple condition according to which the same amount 

of matter must flow during a unit of time through any cross section of the duct.

We denote by F the cross section's area and write the equation of conservation of matter 

in the form

In tiie same fashion we write the equation of energy conservation which expresses 

the constant amount of energy flowing through a certain cross section, and the work 

performed there by pressure, for any cross section

The expression in parentheses is the energy of unit of mass, the entire first term 

is the energy of a unit of mass miltipiied by the amount of matter flowing during a unit 

of time through the entire cross section of the duct. The second term is the work per

formed there by pressure during a unit of time.

With the aid of the first equation, wu transform the second equation to the following

quF —  const (m -i)

(m-2)

form:

(IH-3)
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I — E-t-pv, (m-4)

is one of the fundamental functions of thermodynamics. By dividing (HI-2) by (m-1) we 

get <m-3).

We can find the distribution of velocity and density along the pipe from the two 

equations above, and from the adiabatic law for the change of state of matter in a flow.

To determine the constant in Eq. (III-3), we write its value for the inlet of the 

pipe, i. e . , for that spot where the cross section F is very large and where, accordingly, 

velocity u may be regarded as very low. All the quantities belonging to that cross section 

will be denoted by the subscript 0:

We add to this the condition of adiabaticity of the flow, the absence of heat transfer to the 

walls and losses from hydraulic resistance. This yields for the specific entropy of matter

(IH-5)

S — const=.£*. <m-6)

Now we write the thermodynamic expression

d l -= 7*dS  +  vdp. (m-7)

For constant entropy

(IH-8)

which together with (m-5) yields the velocity

(IH-9)

If the change in pressure is small, we neglect the change in the integrand
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Equation (HI-10) is then the Bernoulli law of the flow of an Incompressible liquid.

If p is close to pQ, we can disregard the change in density and, as In the case of an 

incompressible liquid, we find that the amount of gas <?«» that flows during a unit of time 

through a unit cross section is proportional to the square root of the pressure difference.

However, in the case of large pressure differentials, and with small pressure in 

the Jet, the drop in density of the outflowing gas causes an increasing effect. Whereas die 

velocity increase is li mited by the quantity

for 1=0, gas density may drop to values as close to zero as might be desired.

Then the product (?u becomes zero.

For a given pQ the amount of matter flowing through a unit area of the cross section 

attains a maximum with a certain value of the pressure in the flow p less than pQ; it then 

drops again as p drops further.

We will show that maximum flow rate per unit area of cross section is attained 

precisely when velocity equals the speed of sound in the outflowing gas.

We seek the maximum value of the product

We take a logarithmic derivative with respect to pressure of expression (IQ-12) and 

set it equal to zero (all derivatives for S = const):

u =  \/% (m -11)

pa= ?V 2(/,—4. (m -12)

i Jq dlJJp _
9 dp (m-i3)

(in -14)

(HI-15)

q. e. d.
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Ia un ideal gaa with constant thermal capacity, the dependence of flow rate on

pressure can be readily worked out analytically. 

In this case the relation

(111-16)

holds. In an adiabatic flow

t »-i I »
(m-i7)

We introduce dimensionless variables and refer die corresponding quantities to 

their values at rest; the speed is referred to the speed of sound in the original gas. We 

denote dimensionless density by r — QlQ0, pressure by ‘ pIp& the speed of sound by

Figure 6 shows the curves r, y, (p, 0, as functions of v  for a diatomic gas (e .g ., 

air) for which

If it changes from 1 to 0, r  drops from 1 to 0, ip monotonically increases from 0 to 

/5=2.24; y drops from 1 to 0. The quantity 0 reaches the maximum of 0.58 for v= 0.53; 

0 = 0 for tr = 0 and ir=l. At the maximum point of 0 for n —0.53, y-~<p— 0.90.

Using the example of air at room temperature and atmospheric pressure flowing 

into space with lower pressure, we will show how to use the chart in Fig. 6 plotted from

Then we obtain the following equations:

(ffl-18)
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o
dimensionless quantities. For 1Y*C, pQ = 1 atm absolute, of a ir 1.2 k g /m , cQ = 340 

m/sec. We find the outflow conditions for p = 0.7 atm absolute, tr = 0.7. On the chart we 

find r  = 0.785, whence Q = 0.785 x 1.2 = 0.93 kg/m3; <p = 0.67, whence u = 0.67 X 340 = 

227 m/sec; y = 0.94; c = 324 m/sec. The drop in the speed of sound during outflow is

the result of cooling during adiabatic expansion. Finally, = 0.54, to which corresponds
o

a flow rate per second of 0.54 x 1.2 x 340 = 220 kg/m x sec.

—

Fig. 6. Dependence of dimension
less density (r), velocity ftp), 
speed of sound (y) and flow rate 
ftj>) on dimensionless pressure 
(if) in a diatomic gas with con
stant thermal capacity, k = 1.4 
in the case of steady adiabatic 

outflow.
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Maximum velocity of steady flow into a vacuum attains 340 /5  -  760 m/sec.

For maximum (j> the velocity attains 360 m/sec, and the flow rate is 236 kg/m x

sec.

The quantities relating to the state of the gas in which maximum flow rate per unit 

of cross section is attained (maximum <?“• maximum 0) will be termed critical quantities 

and will be denoted by the subscript kp.

Figure 7 shows the diagram of an experimental gas flow.

Fig. 7. Diagram of 
an experimental gas 
flow from a tapering 
cap (nozzle).

The vessel on the left contains a gas under pressure pQ and is provided with a 

simple tapering cap (a nozzle). As the counterpressure pQ decreases in the vessel on the 

right into which the gas flows, the amount of outflowing gas increases according to the 

formula of Wentzel-St. -Venant (HI 12, 111-18). But if one were to follow that formula 

for all conditions for which the pressure in the outlet cross section of the nozzel p is 

taken to be equal to the pressure in the vessel on the right pQ, men, beginning with a given 

counterpressure, any further drop of the latter should result in a decrease of the amount 

of outflowing gas; specifically, for the flow into a vaccum one would reach the absurd con

clusion that the rate of gas flow per second equals zero.

The fast that when die volume of outflowing substance reaches a maximum, the flow 

speed is exactly equal to the speed of sound (see Eq. IE-15), helps explain this paradox 

and makes it possible to predict what will actually happen when pQ is less than p critical

(i. e . , p smaller than 0.53 pA for air). n u
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In fact, as soon ss  critical flow Is attained, no signals can be transmitted bsok to the

outflowing gas through the layer of gas moving at the speed of sound. If p Is less thatn
Pj^, the pressure and velocity in the nozzle will no longer change, and It will stay equal to 

critical pressure and critical velocity.

The amount erf outflowing substance, having reached a maximum, will no longer change 

with smaller counterpressure values (dashed line in Fig. 6).

With a counterpressure pQ such that there will be an outflow regime in

which the pressure p in the jet at the nozzle outlet is exactly equal to the pressure pn in 

that medium into which the gas flows. The values for velocity and flow rate can be taken 

from Fig. 6 by substituting ir = pQ/pQ.

At an appreciable distance (several nozzle diameters), the outflowing Jet maintains 

a constant velocity along the axis, the gas particles move parallel to it at an identical 

speed (Fig. 8); further on the jet gradually widens and slows downas it mixes with the 

surrounding medium.12

Fig. 8. Jet flow at a counter- 
pressure exceeding critical 
pressure. Subcritical (subsonic) 
jet in free space. Pressure at 
jet outlet equals the pressure 
in surrounding medium. Speed 
gradually fades as jet widens due 
to inflow of surrounding substance.

K O ec  yonterpressure in the medium into which the gas Jet flows, pQ, is smaller 

than critical pressure p. , the outflow conditions in the nozzle are independent of pQ.
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The pressure In the nozzle's outlet cross section is equal to and represents a certain 

portion of pressure pQ in the reservoir (slightly over one-half pQ), irrespective of the 

magnitude of p&. In this case, however, the outflowing jet is not in equilibrium with the 

surrounding medium; the pressure difference p^p -  p& determines the acceleration of 

jet; together with velocity components directed along the axis of the nozzle, there are 

also radial velocity components which cause the expansion of the jet (Fig. 9). The energy 

of the radial velocity components cannot be exploited, hence the efficiency of the jet turns 

out to be less than expected with an assigned pressure differential.

\  13

Fig. 9. Outflow of a jet 
from a nozzle in the pre
sence of counterpressure 
less than critical. Pres
sure inside the jet at the 
outlet cross section is 
critical, but as the jet 
leaves the nozzle the 
pressure drops, the ve
locity increases and 
the jet expands.

13The Swedish engineer Laval was the first to achieve an experiment with a nozzle 

in which the outflow velocity of the jet exceeded the speed of sound and the jet itself had 

an assigned direction. In accordance with the formulas written above, when the outflow 

speed exceeds the critical value corresponding to the speed of sound, the flow rate per area 

unit go drops and, consequently, in order to maintain the flow rate of substance, the cross 

section of nozzle has to be increased (see Eq. (III-l)).
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Unis Laval designed a nozzle to which hie name was given, and which is shown in

Fig. 10.

Fig. 10. La^al nozzle for obtaining directed 
jets at supersonic speeds

We give now another numerical example for air flow. We have a nozzle with a flow 

rate of 1 kg/sec at a speed of 527 m/sec. We remind ourselves of the determination of 

dimensionless quantities and find with the aid of Eqs. (111-18) or the diagram in Fig. 6 that 

for

y —  ~ 527/350 =  1.55

the required counterpressure Z.=.t = .g.1.
p*

Tims, when atmospheric a ir flows in at pQ = 1 atm abs, counterpressure is 0.1 atm

abs. Then (f> = 0.3, and the flow rate per area unit is
3 203?,c /= '0 .3 x 1.2 kg/m x 340 m/sec -  124 kg/m x sec.

An «g—s general flow rate of 1 kg/sec requires a cross section of the nozzle outlet

of 1:124=0.008 m*= SO cm1, and a diameter of the circular opening of 101 mm. In die
o

critica l, narrower cross section $ = 0.58, the flow rate is 240 kg/m x sec, die cross
2

sectional area is 42 cm , and the diameter is 73 mm.

We assign a specific state to tho gas in die vessel whence it flows out, and then 

plot all the possible outflow conditions (Figs. 10 and 11) which differ by the magnitude of 

die gas flow rate per second A. This can be done with the aid of curve $ from Fig. 6. For 

each value of die abscissa x we find in Fig. 10 the nozzle; ■ ross section F, compute the
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Fig. 11. Various conditions of steady 
adiabatic outflow in a Laval nozzle.

quantity t/i equal to A}Fe<fio, and, finally, knowing we seek the corresponding values of 

dimensionless pressure. Since curve 0 from Fig. 6 has a maximum, then at an arbitrarily 

assigned value of $ we will have, as a rule, either two values of ir, or none.

If we choose a small flow rate A such that A <  Fmf v/e obtain a pair of curves,

for instance, 1 and 8, or 2 and 7. The bottom curves 7 and 8 can be plotted only if a gas jet 

already moving at supersonic speed enters the nozzle on the left, which contradicts the 

assigned steady-state condition for x = 0.

The top curves 1 and 2 are perfectly reasonable solutions which can actually be 

obtained when counterpressure ranges in the interval pQ -  p^. Qualitatively there is no 

difference between this motion and the one in a Venturi tube; the wider part of the Laval 

nozzle acts a6 a diffusor that restores a part of the kinetic head of the fluid. Attempts to 

plot conditions with a flow rate greater than critical, A >  Fn  v>,, Co Co, lead to no solution 

in the middle of the tube. The corresponding pairs of curves, 10 and 11, 9 and 12, do not 

reflect any real motion of a fluid.

Finally, in the case of critical flow rate/I — Fv  £«*• the segment of curve 3 

issuing from the initial point p^, xQ hits at the critical cross section the ramification 

point. With a counterpressure p = p^, there will be curve 3-4 which is very close to the 

subsonic conditions 1 and 2.

With a counterpressure p = p_, we have line 3-5, ami the Laval nozzle yields aU d
supersonic flow.
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A further decrease in pressure cannot change the motion in the nozzle. If P* <  Pi 

we have again line 3-5 in the nozzle and consequent expansion at the outlet.

We are unable to say, however, what happens if counterpressure ranges in the interval 

between and p^. To find the answer we have first to investigate the theory of shock 

waves (see Chapter 18). One-dimensional theory no longer includes the design of a 

nozzle that would give a strictly uniform flow. For this problem, see, e. g ., Busemann's 

paper [40].
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Chapter 4 

Properties of Supersonic Jetg

In the preceding chapter we dealt with the theory of the Laval nozzle which makes it 

possible to obtain a steady parallel gas flow that moves at a supersonic sper ,

Since the time Laval invented his nozzle, a considerable number of investigations 

were conducted into the properties of supersonic flows, which, in many respects, differ 

appreciably from gas flows that move at subsonic speeds.

According to a remark by Prandtl, the supersonic flow blindly runs into an obstacle.

This means that the turbulence caused by an obstacle has no time to expand forward, has no 

time to warn the fluid particles that move toward the obstacle of what is going to happen 

to them; thus, the nature of the flow around obstacles, the nature of the cm supersonic flows 

is completely different from the customary picture of the motion of an incompressible fluid. ** 

To explain the above, let us first conduct the following simple test: beginning at a 

specific instant of time, we shall at specific, identical intervals produce at a given point in 

a flow a certain minor disturbance; in a gas at rest, this disturbance would generate spherical 

waves which would propagate at a speed equal to that of sound; in a gas flow, to the pro

pagation speed of the spherical waves there will be added the speedof the flow as a whole, 

in other words, the spherical areas of turbulence are levelled by the flow; however, there 

will arise two completely different situations depending on whether the flow moves at a 

supersonic or subsonic speed.

In Fig. 12 (a and b) turbulence is produced at identical time intervals r  at point 0 of 

each diagram. In Fig. 12b, during the time r  the flow covers a distance u r = 2.5 cm; in 

Fig. 12a, where the flow velocity is less, the distance ut = 1.5 cm. The speed of sound 

c is in both cases identical and such that cT = 2 cm .15 In a gas at rest we would have 

obtained a number of concentric spheres R^, 

is larger than the radius of the preceding one by 2 cm. Figs. 12a and b show how these spherical 

surfaces are levelled by the flow.

Rg, R„; the radius of each subsequent sphere
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Fig. 12. Propagation of turbulence from a source 
In a flow moving at subsonic speed (a), and at super

sonic speed (b).

In a flow moving at a subsonic speed, turbulence may move against the direction 

of the flow and, thus, the whole flow will gradually become turbulent: turbulence in

volves the entire area in which the fluid moves (Fig. 12a).

From Fig. 12b it can be seen that in a supersonic flow, turbulence envelops only a 

portion of die space enclosed within the cone of revolution. The angle of this cone can be 

readily found. As can be seen from die diagram, sin O (where a  is the central angle of the 

cone) is equal to c/u. If the source of turbulence is an object Disced within the gas flow 

moving at subsonic velocity, we have the usual picture of a flow around the obstacle; 

die velocity of die entire flow obviously differs from th* fl*iw velocity that would have 

existed had there been no obstacle. The turbulence caused by the obstacle expands 

gradually to die entire flow, and then fades out to become zero at a considerable distance 

from the obstacle. In a supersonic flow, the turbulence caused by the obstacle differs 

from zero only within the cone with the central angle found above (for the motion in die 

immediate vicinity of the flow around body, where turbulence cannot be considered 

negligible, sec Chapter 17).

Thus we obtain a picture (characteristic for supersonic flows) of steady sound waves 

moving from any obstacle placed into or turbulence occurring within a supersonic flow.
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These waves, known as Mach waves (from the name of the famous Viennese physicist 

who investigated them) make it possible to readily determine the velocity of a flow or, 

conversely, to determine the velocity of a body in a stationary gas by measuring the 

angle formed by the wave with die direction of motion (known as the Mach angle). Speaking 

generally, if the speed of sound of the gas investigated is unknown, then, in any event, the 

observation of the Mach waves and the measurement of the angle between then will make 

it possible to find at least one relationship, namely, the ratio of the velocity of the gas in

vestigated to the speed of sound.

In these cases, however, where the state of the gas at a given point in the flow is 

unknown, one usually knows its "state at rest", i. e . , the state in the vessel whence the 

gas flows out and where the gas velocity is small or negligible. The Bernoulli equation 

and the Mach angle equation are sufficient for determining two quantities, viz., sound 

velocity and flow velocity

h -
(IV-1)16

whence

*!"> — 2ain'1__ •
" ’i f - 1 -i 2 0 k — 1 «-2 un'-i '  (IV -2)

c *_____ \ ____
“  “ C# * - l  -i-2cmH

With the aid of formulas (m-18) we find the pressure and the density of the gas in the 

flow (assuming that entropy is constant, which is true in the absence of shock waves and in 

the case of a short nozzle).

There is a remarkably deep analogy between the phenomena observed in gas dynamics 

and the flow of a heavy, imcompressible fluid in a duct open at the top [7, 22, 73]. This 

analogy makes it easy to reproduce a "supersonic" fluid flow with an open surface, to perform 

sophisticated demonstrative tests and, in particular, demonstrate the steady propagation of 

waves along the surface of a fluid in die case when the fluid moves at "supersonic" speeds.

The above-mentioned analogy between a fluid with a free surface and a compressible 

gas is based on a simple physical phenomenon. We examine a duct open at the top into which
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a liquid is poured. By changing the pressure of the liquid in the duct we can chaige the 

liquid's level and thus change the amount of liquid per unit of duct bottom area, or per unit 

of duct length. The process of pushing upward the liquid in the duct is analogous to die 

process of compressing a gas contained in a pipe closed on all sides. Thus, for instance, 

a duct with a rectangular cross-section is equivalent to a gas governed by the Buyle- 

Mariette law, because in a duct with a rectangular cross-section the amount of liquid 

per unit of duct bottom area, i. e . , what may be called density (referred to a unit of 

surface), is proportional to the pressure on the bottom. In the case of the motion of a 

liquid with an open surface, the role of sound velocity in gas dynamics is played by tne 

propagation on the surface of a liquid of gravitational waves.

As in gas dynamics, it is possible under specific conditions to achieve a "supersonic" 

flow oI liquid, i. e . . a flow in which the speed of the liquid i6 greater than the propagation 

speed of waves over its open surface. Such a flow can be observed if we direct a water 

jet from a height of several tens of centimeters on a polished plane surface. Near the 

impact point of the jet with the surface, within a circle with a diameter of several 

centimeters, the layer (film) of the liquid is very thin; the liquid moves at a very high 

speed. If at that point we place an object, for instance, a needle, we can observe the 

characteristic picture of r feady surface waves proceeding from the needle under a 

specific angle; these waves are very similar to the Mach waves in the case of a super

sonic gas flow. Beyond this circle with a diameter of several centimeters, the thickness 

of the liquid layer abruptly increases for several millimeters; this is accompanied by a drop 

in the velocity of the liquid, and is in analogy with the shock wave phenomenon which x 

will be discussed beiow. In this second region, where the liquid layer is comparatively 

thick while the velocity of the liquid is comparatively low (less titan the propagation speed 

of sciUations over the liquid surface), the properties of the flow are completely different.

The frequently used poetic simile of a wide river, lazily flowing along, and a moun

tain brook, furiously swirling over rocks and stones, is much deeper and much more 

significant could be suspected. In fact, in these cases we are faced not only with a
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quantitative difference in the velocity of the flow. Because of the existence of a specific 

characteristic velocity, die velocity of wave propagation on die interface between the 

water and the air, the two flows (the wide river and the furious mountain brook) are 

also qualitatively different.

Measuring the temperature of a supersonic flow in a Laval nozzle has yielded very

interesting results. Unlike the computations from the formulas in the preceding chapter,

the gas temperature measured by a thermometer or a thermocouple placed into the flow

drops negligibly, and is found to be quite close to the temperature of the gas in the reservoir

from which it flows out. Thus, a ir flowing from a reservoir in which its temperature was

300‘K, must have a temperature of 250°K in the critical cross-section, and a temperature of

167°K = -106° C in the cross-section in which the flow speed is twice the speed of sound

(2c). However, the temperature at this spot measured by a thermocouple is approximately

280°K. Such a result is, as a matter of fact, quite natural, because the temperature

measurement with a thermometer or a thermocouple does not give the difference between

thermal motion, i. e . , the chaotic motion of the molecules, and mass motion of the gas,

i. e . , the well-organized flow. It is therefore obvious that the temperature measured by a

thermometer or a thermocouple is , . in reality, a gauge for the total energy of the gas, a gauge

for the sum of the thermal and kinetic energy of the gas, i. e . , it is the gauge for a quantity

which virtually does not change in the flow. If we examine a plate placed into a flow normal

to its direction, then, in examining the flow line near the plate we can see that as we

approach the plate, the moving gas in experiencing a braking effect; with this, according to

Bernoulli's theorem, is connected the inverse increase in pressure and, in the case of a

gas, the corresponding rise in temperature to values which pressure and temperature had
17in the gao at rest in the reservoir from which it flows through the nozzle. It is therefore 

obvious that the plate placed in a normal position to the flow direction, acquires not the 

real temperature of the moving gas, but the temperature of the slowed-down gas near the 

plate, which coincides with die initial temperature of the gas before it started to flow 

(known as its temperature at rest).
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If we take a plate placed tangentially to the flow lines, then we find another reason 

for the increase in temperature in it; in the thin boundary layer near the plate where flow 

velocity changes considerably over a short distance, there occurs the release of significant 

amounts of heat due to internal friction in the gas. From the molecular-kinetic gas theory 

we can work out a ratio between the internal friction factor and the thermal conduction of 

the gas. The relation between effective viscosity and effective thermal conduction in a 

turbulent flow also satisfies that equation. Owing to this ratio it becomes possible to 

obtain in the general form relation between release and the removal of heat in a boundary 

layer.

Pehlhausen's computations [74] show, in complete agreement with the experiment,

that a tangentially placed plate will also acquire a temperature in the gas which will be quite

close to its temperature at rest (see also [6, 31]). Some 85% to 100% of thekinetic

energy will be converted to thermal energy in the boundary layer of the gas near theplate.

Accordingly, the temperature of the plate oscillates between the temperature at rest and
180.85 of that temperature plus 0.15 of the real temperature of the gas

Trest ^  Opiate ^ 0-857"re*t -t-0.15 7*gM. (IV-3)

To measure the real temperature of a gas moving at sonic or near-sonic speeds, 

we must resort to a method in which the thermometer moves with Ihe gas at the same speed.

A practically convenient method isthe one developed recently, which measures the temperature 

by inverting the spectral lines. This method, however, is applicable only at comparatively 

high temperatures, in any event higher than 1000°C.

The problem of the temperature acquired by a surface around which flows a gas moving 

at a high speed, is of great technical significance since the performance and efficiency of 

gas turbines are today determined by the maximum temperatures to which die blades can 

resist. We can see that it is inadmissible to equate the temperature of ihe blades to that cf the 

gas. Ihe  temperature of the blades will always be somewhat higher because of the kinetic 

energy of the moving gas.
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Chapter 5 

Gas Flow la a Long. Cylindrical Pipe

We investigate the motion of a gas in a long, cylindrical pipe provided externally with 

thermal insulation. Thermal insulation was introduced so that we could take the total 

energy of the. flow to be constant in all cross-sections. However, unlike what we did 

when investigating the Laval nozzle, short nozzles and attachments here we shall no 

longer ignore the friction of the gas against the walls, i. e . , the resistance to the gas flow. 

The joint effect of heat release, friction near the walls and heat transfer between the walls 

and the gas will be that the temperature of the walls does not differ from the initial gas 

temperature in the reservoir from which gas flows (see the preceding chapter), and, con

sequently, there will be no need for thermal insulation in the particular case where the gas 

temperature in the reservoir is room temperature.

If we introduce hydraulic resistance to gas flow, i. e . , if we introduce an irreversible 

process of internal friction, we can no longer take the entropy of the flow to be constant, 

hence our results and methods will somewhat differ from the results and methods dealt 

with in chapter 3.

We set up the equations for the motion under study, assuming the cross-section of the 

pipe to be constant. We take the complete gas flow through any cross-srction of the pipe 

to be constant and obtain the first equation:

eu =  :!/=  const (V-l)

Also constant is the complete energy flow (plus the work of pressure forces) referred 

to a unit of pipe cross-section,

pit quE =  const (V-2)

But since the amount of substance flowing through is also constant, then by dividing the 

second equation by the first one we obtain the constancy of the sum of enthalpy I 

and the kinetic energy of a unit of mass in the flow:
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/ H - -y = const = / #. (v-3)

Here, as before, we denote by Iq the enthalpy of the gas before entering the pipe, 

i. e . , in the reservoir, where gas velocity is very low.

It is worth noting that from two equations, the equation of conservation of matter und 

the equation of conservation of energy, we can eliminate velocity and thus obtain a specific 

relation between the quantities characterizing the state of the gas, (pressure and volume); 

this relation is such that it does not depend upon the mechanism and the magnitude of friction 

(51, 89]. This can be represented graphically by curves in the plane p, v or by curves in the 

plane I, S, known as Fanno lines (Fig. 14).

Only the velocity of a point that represents the state of the substance moving along a 

Fanne line will depend on the pipe resistance, i. e . , on the magnitude of dissipation forces.

v' ~ ••• / / / / y / '7 / / /  's / / / / / 4  
V T\J — _

Jl-

'-Pi
~uT

■a/ aC0"/7'77/7/Z/ // / / / / / / /

Fig. 13. An elementary 
cylinder cut from a long 
pipe. The substance flows 
f a and out at the ends, where 
pressure forces are active; 
the lateral surface experiences 
the effect of friction against 

the pipe wall.

Let us take a portion of a long pipe Ax (Fig. 13) and clarify how over the entire 

stretch of Ax gas velocity and pressure change on account of resistance. The total amount 

of substance flowing through the pipe cross-section in a unit of time is quF= M F=const 

The amount of motion carried by the flow in a unit of time is MFu= qu'  F.

According to Newton's second law, the change in the amount of motion when covering 

a distance Ax between two control planes 1 and 2 is equal to the momentum of pressure
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I

Fig. 14. Fanno lines in the 
entropy — enthalpy (S, I) plane. 
Along these lines the state of gas 
flowing through a pipe with a 
constant cross-section changes 
without heat transfer, but in the 
presence of resistance. The lines 
are found from the conditions of 
sub stance flow conservation and 
energy flow conservation in the 

pipe.

force (friction) # , acting on the lateral surface 3 of the cylinder cut by planes 1 and 2 from 

the pipe:

M F(u.~ u,) =  (pl — p,) F-t-ndAx'l'. (V-4)

We introduce the resistance factor in the usual way accepted by the hydrodynamics of 

incompressible fluids, and write for a round cylindrical pipe of diameter d the force of re

sistance $  per unit of lateral surface

4> =  —f(?u|u|/8. (V-5)

We find from Eq. (V-4), bymaking a transition to infinitesimals and to the unit of cross- 

section, the equation for the amount of motion, which includes the pipes resistance. Unlike 

the first two equations, wc cannot write it immediately in its integral form. The differential
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equation takes the following form

d(Qti*-i-p)_ d{Mu p) _ ( gu|u|
dx ~  d  2~ (V-6)

The form of the last term  is somewhat different form the usual; this is due to the 

fact that the sign of the force of resistance depends upon the sign of velocity. The force of 

resistance is always directed against the direction of gas flow, and this fact is lost in the

In the I, S plane, the Fanno lines corresponding to various values of flow rate M(see 

Eq. (V-l)), take the form shown in Fig. 14. For an ideal gas, enthalpy I coincides to an 

accuracy of one factor with the temperature. The I — S diagram differs from the T — S 

diagram only by its scale.

The quantity M is constant along each line and is a parameter that changes only from 

one Fanno line to the other, and decreases from left to right since for a given temperature 

density drops as entropy increases.

Let us now determine how a point representing the state of the gas moves along a 

Fanne line under the effect of resistance as the gas moves in the pipe. With the aid of the 

well-known thermodynamic expression for the enthalpy differential, we write the equation 

of conservation of energy in its differential form

_ _  l  dp T d S  a dit_ _ _ _ _
~ ~  Q dx~*~ d x — U ‘

We substitute the value o'f velocity determined by the law of conservation of matter 

(V-l) and expressed by the quantity M constant along the entire pipe, and obtain for entropy 

the following equation

usual writing ^  =  £{?u!/2</, or =  fou?/8.

d  / •  g *  \ _ _ _ _ _ d 1/  a t / u ____ vdp T d S  uda
dx \  2 I  dx dx dx dx dx (V-7)

1  I dp M  c / u \

f U* dx r (V-8)

With the aid of Eq. (V-S) we finally find

( V - 9 )
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If the sign of dx coincides with the sign of flow velocity u, i. o ., if, changing x, we 

follow the flow direction of the fluid, entropy increase is always positive since the produce 

of udx is also positive.

The motion of substance in the presence of friction is accompanied by the conversion 

of mechanical energy into thermal energy; in a thermally instated pipe, in the absence of 

heat iake-off, this process is accompanied by an increase in the entropy of the substance 

flowing through the pipe.

The right-hand side of Eq. (V-9) is nothing but the work performed by the forces of 

resistance on an element of length dx. referred to a unit of mass of the flowing fluid.

Above the entropy maximum, on the segment AB of the Fanno line (in the subsonic 

region, as we shall see now), motion is accompanied by a pressure Irop as in an incompressible 

fluid, as can be seen from juxtaposing the slope of the Fanno iin* «.• id line p = const in the 

right-hand side of Fig. 14. Conversely, below points B, R, T, in the case of supersonic 

flow, resistance causes an increase in pressure a’ong the flow; the force of resistance and the 

increase in pressure are overcome by the flow by means of the kinetic head, and by means of a 

<Lop in velocity due to increase in density and compression of the gas from increased pres

sure.

Accordingly, in a subsonic flow, u increases in the flow direction while I drops. In a 

supersonic flow, u drops and I grows.

Let us show that at point B of maximum entropy the flow velocity is equal to the speed 

of sound. -This can be readily shown in Fig. 14 if we plot through B a vertical tangent. We 

notice that at point B, where S = maximum for M -  const (motion along the Fanno line), there 

also takes place M = maximum fer S = const (motion along the tangent). The latter condition 

leads to an equality between flow rate and speed of sound, as was shown in Chapter 3 (Eqs.

(HI-12 -  m-V)).

Incidentally, the proof can easily be given directly: near point B, it is obvious that

(V-10)
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From the countinuity equation (V-l) it follows that

Jtt -I JoV (Vrll)

In Eq. (V-7), if we pass from differentiating with respect to coordinate x to differentiating 

with respect to density Q we get at the point of tangency

1J Jp . y  JS 
> Vp ' Jo J$ 9 9

“* = e \

= 0j
(V-12)

q. e. d.

Now we can easily plot a physical diagram of gas flowing through long pipes. Figure 

IS shows the flow rate M of gas during a unit of time as a function of pressure at the end 

of the pipe p, with an assigned pressure pQ in the reservoir from which the gas is flowing 

out.

Fig. 15. Dependence of flow rate 
(M) on counterpressure (p) for pipes 
of varying length with a given pressure 
at the inlet (pQ). The top curve is for 
a short nozzle, and the bottom curve 
is for the longest pipe. The straight 
line divides on the left the region of 
critical outflow at a velocity equal 
to the speed of sound at the outlet; 
if ceunterpressure ie less than 
critical, M does not depend on p.
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The various curves are referred to pipes of different lengths. The top curve re

presents the case of a short nozzle as dealt with at the beginning of Chapter 3. The 

longer the pipe, the smaller the amount of gas flowing through it (for a given pressure 
difference). In all cases, a pressure drop below a certain critical value no longer 

causes an increase in gas flow. However, this critical pressure itself is all the 
smaller, the longer the pipe. For critical outflow at the outlet of the pipe, in all cases 

the velocity is equal to the speed of sound; the relation between the temperature of the gas 
and its initial temperature in the reservoir, as well as the relationship between gas velocity 

and sound velocity in the initial gas in the reservoir are also invariable, irrespective of 

the length of the pipe. However, the density of the outflowing gas, which, for a given gas 

temperature is proportional to the pressure, varies in accordance with the length of the 

pipe. Thus, the critical points for various pipes on Fig. 3 can be connected by a straight 
lines issuing from the origin of the coordinates. According to Stodola, for usual values of the 

resistance factor of commercial pipes, the critical (maximum) M  when changing from short 

nozzles to pipes of a length of 360 diameters drops by one-half, for pipes 1000 diameters 

long it drops by one-third, and for pipes 5000 diameters long, it drops by one-sixth.

No matter how much we reduce pressure at the outlet from a cylindrical pipe, we will 
never be able to achieve supersonic speeds in the pipe. In order to accomplish this, the 

gas must enter the pipe already at a supersonic speed.
In the I-S diagram in Fig. 14, the inflow of the gas from the reservoir into the pipe

19through a short connecting uozzle AB (Fig. 16a) is not described by a Fanne line but by an 

adiabatic curve which slopes vertically from point N (Fig. 14) and describes the initial state 

of the substance. In a simple tapering nozzle, the state of the substance at the inlet to the 
pipe is represented by any point on segment NB, for instance, F or Fj. The state of the 

substance at the outlet from the pipe is determined by the assigned counter-pressure p; the 
point representing it must be on the isobar EEj. The selection of the Fanne line along 

which we change from the adiabatic curve NB to the isobar, and that corresponding to the
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magnitude of the gas flow for given pQ and p, depends on the length of the pipe, and 

also depends on the Increase of entropy along the pipe. If we increase the length of the 

pipe, we change from mode NF^E^ to mode NFE, and the flow decreases.

Fig. 16. Connection of the pipe 
with a tapering nozzle (a) and with 
a Laval nozzle (b). A supersonic 
flow inside the pipe can be obtained 
only in the latter case.

If counterpressure at the pipe outlet is less than critical, there will be a critical 
outflow, the mode described by segments NF^E^R or NFET (depending on the length of 
the pipe), with the subsequent expansion of the gas, see Chapter 3, Fig. 9.

If at the pipe inlet we place a Laval nozzle (Fig. 16b), then at the inlet we will 

achieve supersonic, speed, we will achieve the state represented by a point on segment BD, 

Fig. 14, for instance, L.

In obtaining a supersonic flow, there are in the Laval nozzle outflow conditions with 
a fully established flow rate M  (see Chapter 3); the position of point L on the segment BD 

can be readily determined by means of design data, viz., the cross-section of the nozzle 
at its narrowest point i J the cross-section of the pipe.

Then, along the pipe there occurs a motion from point L to the right following the 
Fanno line. In the case of supersonic flow, the outflow conditions ere independent of
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The supersonic flow conditions as shown in Fig. 16b require a sufficiently low 

counterpressure. However, in a long ptjh? i t is possible that the increase of entropy 

along the line LQR will run into the crlU :al p oint R.

Thus, in the case of a long pipe with considerable counter pressure, provided with 

a Laval nozzle at the inlet, we will never achieve supersonic speeds at the outlet of the 
pipe irrespective of the magnitude of counterpressure. A close investigation of the out

flow conditions shows that in the pipe or in the nozzle there occurs what is known as a 

"densification jump", i. e., a shock wave, the theory of which will be discussed below. 

The description of the various flow conditions in the pipe m  the presence of shock waves 

is analogous to the Laval nozzle theory (see Chapter 19). Here we can refer only to 
^usemann's paper [41]. A detailed bibliography, complete through 1958, can be found 
in Frank!, Khristianovich and Alekseyeva [27].
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Chapter 6

Motion that Depends on the Relation Between Coordinates and Time 
It was mentioned in the Introduction that in gas dynamics a fundamental constant 

of a substance in motion is a certain velocity, the velocity of propagation of turbulence, 

the speed of sound, etc. If we neglect the dissipation processes, matter has neither 
a characteristic length nor a characteristic time. From the molecular-kinetic gas theory

it follows that by introducing dissipative forces, such as viscosity or thermal conduction,
*

in combination with the characteristic values for the speed of sound, one obtains for the
characteristic values of length and time the length of the free path of molecules and the

time of the free path, i. e., exceedingly small (infintcsimal) values for length and time.
Whence it follows* that if one is not interested in infinitely small processes occurring over

distances and during a time of the order of magnitude of the length and the time of the free

path of molecules; if, further on, we assign initial and boundary conditions for motion that
contain neither a characteristic length nor a characteristic time, then one will deal with a

special, extremely important class of motion. Since the equations of motion, and the initial

and boundary conditions contain only the characteristic values of velocity, but not of length

or time, the independent variables themselves —  the coordimte and tlB time —  can appear
in the solution of the equations only in a combination of dimensional velocity x/t. In other
words, we expect solutions that will change but still remain self-similar (self-modelling).
With the increase of time counted from the instant motion begins, the character of motion

as such will not change, but there will be an increase in the scale and the size of the

region involved in the motion, which will be proportional to time. Accordingly, we expect

that all quantities depend only on one combination of variables x/t, so that from the study of

differential equations with partial derivatives for functions with two variables (coordinates
and timo) we can switch to ordinary differential equations in the case of motion along one 

20coordt ato.

We write these equations; we denote $ = x j t and immediately set up the transformation 
formulas for the new viariable:
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(VI-1)

Ji__ ___*_d  .
dx ~  t  d£ » d t~ ~  fi  e f *

d  i  . i  1 ,  d

As is customary in hydrodynamics, J _  is the notation for a local derivative with
dt

respect to time, d/dt is a substantial (that is, for a given volume moving at a speed u) 
derivative.

If a certain quantity f interesting us is a function of the new variable f, i. e.,

/= / ( * .  <>=/(t -)=A &

then we obtain the following formulas

(VI-2)

V _ w / .  V _______ L iL .  4T
ix td l*  at t d£' dt t dt (VI-3)

We transform with the aid of these formulas our fundamental equations (Chapter l)t 

and obtain the equation of conservation of matter and the equation of motion in the following 

form:

dg da t t\ do . da

(VI-4)

=  d*’ (VI"5)

The quantities x and t can be completely eliminated from the equations, as should 

have been expected.
The above equations can be satisfied following the assumption that all the quantities, 

u, p, and Q are functions only of the combination £ = x/t, but not of x and t individually.
Let us now show an example of initial and boundary conditions which do not contain 

the quantities x, t separately. We imagine an infinite plane which begins to move at an instant 

1 = 0  at a steady velocity w, so that the plans coordinate x^ = wt, x̂ /t = w, where «o<0 

(which means that the plane moves to the left). The gas under study is to the right of the 
plane and expands as the plane moves (see Fig. 18).
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We are looking for a solution for our equations assuming that until the instant t = 0  

the gas has been at rest and had identical constant values for density and pressure. After 
the piston begins to move, when l>0 we set the condition according to which the gas 

particles adhering to the piston must move at the same speed as the piston does.

Regarding the space filled with gas in which there occurs the propagation of the 

turbulence caused by the piston, we assume tiiat it is unlimited toward jr >  0; the initial 

conditions involve no initial value for length, and the boundary conditions are formulated 

only on surface of the piston where they contain only an assigned piston velocity w.

At the end of this Chapter we shall investigate separately the problem regarding 
the extent to which the solution that depends on x/t, which we are seeking, can be used 

for problems involving a finite (limited) gas-filled space.
We juxtapose the equations for the conservation of matter and the conservation 

of motion as written above, and obtain

' A  A  (VI-6)

whence

(VI-7)

The latter equation makes it possible to construct two forms of solution: the first, 

a completely trivial one, p = const, corresponds to p, c, p, u = const, i. e., to the motion 

of the gas as a whole; the second form requires that

(VI. 8)

where c is the speed of sound.

We select in the latter formula the sign u - £ = - c; £ = c + u, which corresponds to 
motion on the right of the piston, i. e., to tuiblence propagating towards the right.

The value of £, and consequently, all the values of p, 0, u, which depend on £ 

alone, are constant on the lines £=c-*-u, x=(c-*-u)/t on the so-called characteristic
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equations of gas dynamics. In the problem under study all the characteristics are 

straight lines issuing from the origin of the coordinates x = 0, t = 0, i. e., from the 
point at which turbulence was started (Fig. 17).

We use the relation u = £ = - c, in which c is fully determined by the state of the 

substance, and transform the equations of motion (VI-4) and (VI-5) to

c d g —-Q </u; ocdu  —  dp. (V!-9)

Both equations are equivalent, since dp =  c* do. The connection between u. p, p, is the 

same as in an acoustic (weak) wave in Chapter 2, that propagates in a positive direction.

From here we can immediately find the connection between the velocity acquired by the 
gas and its state

u =  [ [ ± .J 6 J (e (VI-10)
For an ideal gas with a constant thermal capacity, we write c /cv = k and readily 

compute the integrals

a , . ^ r w - i i .° —(*-!)*„ I I * /  J

The following solution is remarkable: bearing in mind that

(VI-11)

t_  .  i - 1 ,  ,  Je i - l r f fIn c =  — —̂  in o const, - =  — — i

we get

(VI-12)

u f cdg___2
J 9 i — 1

2
k—l ( c — Co). (VI-13)

In order to find the distribution in space of the quantities interesting us, i. e., the 

structure of the wave, we must use the algebraic relation which contains the spatial 
coordinate u — c =  —  c.
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In t**e case of a more complex relation between p and p , we differentiate the latter
relation with respect to £:

da . de__ |

<  d* ~  ' (VI-14)
and, substituting u = u (p), c = c(p), we get an expression for dp/d£ (we might, just as 
well, have immediately looked for an equation for another parameter, for instance, p or c).

Fig. 17. Characteristics of 
gas-dynamic equations: the 
lines in the plane coordinate 
(x) - time (t) are OA, OK, OL, 
and OB. Along them are con
served all the quantities that 
characterize the motion and the 
state of a gas in the presently 
investigated case of turbulence 
caused by the movement of a 
piston. The pistons' move
ment is represented by line 
II, and the motion of single 
gas particles is represented 
by the dashed lines.

In the present case of an ideal gas with a constant thermal capacity, the equations 

are extremely simple.
2 "We substitute into (VI-14) d u  =  j — ^d e , and find



The velocity of motion and the speed of sound in the wave linearly connected with the

quantity £, which is the state propagation velocity.

With an assigned piston speed, the entire motion (Fig. 18) consists cf two trivial

regions: the unperturbed gas (I), and the gas that adheres to the piston and moves at a

velocity which is constant in the entire region (III), and a turbulence region (II), which

may be called a wave, in which all the quantities change their values in one trivial region

until they reach the values in another trivial region. In each trivial (I). (Ill) region
f[?=^f=3i=^^=0, u— Conversely, in the turbulence wave u - £ = - c, and the «s
formulas (VI-8), (VI-14), and (VI-15) apply. We can readily design a mode for any piston 
velocity in the case where that velocity is negative.

The distribution of velocity and pressure in space as shown in Fig. 18 corresponds to 
the distribution in terms of variables t, x in Fig. 17.

Fig. 18. Expansion wave; instant 
distribution of pressurep and velocity 
u as a function of coordinate x. As 
time t increases from the instant the 
piston begins to move, the entire dis
tribution stretches proportionally 
along the abscissa. The hatched 
area on the left is the piston II.

All the values along the x-axis in Fig. 18 gradually grow in accordance with the 

solution that depends on the ratio x/t. The wave proper is contained in the region AB(II). 
To the right of A we have the unperturbed gas in the state in which it was before the piston
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began to move (1). Between the piston and point B there is a region in which the gas moves 

with the same speed as the piston, the pressure and speed in the interval - B being constant 

("trivial region" m). Point A moves to the right at a speed cQ. Point B moves to the right 

at a speed c + w, where w is the speed of the piston, that is equal to gas velocity at point 

B; we remind the reader that ta<0, and c is the speed of sound in the gas. If the piston 

moves at a very high speed, the quantity c - w may become negative (in the case of an ideal 

gas this will happen when M  >  j ^ i  co)» a°d point B will appear on the left of the ordinate.
At points A and B the values for velocity and pressure are continuous. Their derivatives, 

however, appear to be discontinuous. Hence points A and B are sometimes known as points 
(surface in a three-dimensional space) of weak discontinuity, or acceleration waves.

Figure 17 shows in the plane t, x the movement of the piston and the lines along 

which a constant value for p ressu re  and velocity is maintained, which a re  known as  the 

charac te ris tics  of the problem; these lines include such which correspond to the displace

ment of points A and B depending on tim e. Finally, the dashed lines show the tra jec to ries  of 

single gas particles.

In the regime under study, in which all the quantities depend on the ratio x/t alone, 

we proceeded from the assumption that the problem does not contain any dimensional 
quantities of length or time. In particular, one of the main assumptions was the unlimited 
stretching of the gas into the region x>0.

The character of the solution found makes it possible to make this requirement less 

strict. If we are interested in the movement of the gas during the first to seconds following 

the beginning of the piston's movement, turbulence (the extreme point A) will have had a 

change to propagate only over a distance c^; for our solution to be acceptable, the second 

wall, the one that confines the gas on the right, be at a distance greater than e^.

Thus, under any geometrical conditions, our solution is of interest for the description 
of the initial condition of the motion of the gas. The relation between gas velocity and pressure, 

and the rectilinearity of the characteristics are maintained even in the more general case
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involving any motion of the piston towards a < 0  (to the left, if the gas is to the right of the 

piston, see Chapter 14) at a nonuniform velocity; in the case of that movement, acceleration 

has the same direction, »/J *„/</<*< 0. This can be shown by a method of characteristics which 

cannot be discussed here. Equation (VI-11) is true until as a result of reflection from another 
wall or another turbulence the waves do not begin to propagate in the opposite direction, for 

which (see Formulas above, or Chapter 2) there appears another sign in expression 
I'cJu =  dp.

The value found by us for maximum gas velocity during its expansion is quite interesting.
2 iFor an ideal gas, from our formula — u==jZTi(c«— c) . we see that the speed cannot exceed 

2—  u-M=£ZTic<i» pressure on the piston at a speed less than critical is given by
u

For a diatomic gas (eye, =  1.4) maximum velocity is equal to five times the speed of 

sound in the initially unperturbed gas. We can readily see that at such a speed of the piston, 
pressure on it is precisely equal to zero; in other words, this describes the outflow of a gas 

into a vacuum formerly sealed off by a partition that has been removed at a given instant 

(Fig. 19). For air we find p = P t (l —  0*2 -— )•

I
1
►
1

P'P,
1

p-0

I ■ * —

Fig. 19. Test diagram for 
a turbulent inflow of gas into 

a vacuum.

It is interesting to compare the trend of the velocity and state curves in a steady flow 

(Chapter 3) with those in a rarefaction wave that expands with time. In both cases the
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expansion of each volumetric element occurs with constant entropy, so that the relation 

between various quantities that characterize the state of the gas is identical:

5 = const; ^ = ( £ ) ‘ =

As a variable that characterizes the state of the matter we conveniently choose the 
quantity “i  — c/co* Velocity g>= u/c# referred to the initial speed of sound is expressed in the 
rarefaction wave (see VI-13) by the equation

1(1— r>, *=1.4, s»=5(l —  

in a steady flow (see Eqs. (in-12 and EH-18))

(VI-16)

9  =  *=1.4,9>=V5(1—  '/*)• (VI-17)

In Fig. 20, the last two equations for K = 1.4 are shown in solid lines. In the case of small 

changes of the speed of sound (for y close to 1), i. e., in the case of slight changes of 

pressure, velocity in a steady flow is considerably higher than in an expansion wave. This 
ratio is inverted if y is small and if pressure is small. The highest speed is obtained if 

steady and turbulent flow are combined, as shown by the dashed line in Fig. 20. At the 

point oftangency A the critical conditions for steady flow are attained, and <p = y. If instead 

of the experiment shown in Fig. 19, we take out the plug that seals the end of the evacuated 

tube (Fig. 21), then at the inlet cross-section DD* there will very soon be a stationary flow 
(seguient MA in Fig. 20), and the expansion wave (dashed line in Fig. 20) expands along 
the tube. Thus, under the conditions as shown in Fig. 21, it is possible to attain an even
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higher speed of flow into the vacuum than in the experiment shown in Fig 19. In the case of 
a diatomic gas, we get 5.5cQ instead of 5c0<

Fig. 20. Dependence of dimension
less velocity <p on dimensionless 
speed of sound y  for diatomic gas, 
k = 1.4; Eqs. (VI-17) applicable to 
steady flow; Eq. (VI-16) applicable 
to inflow as per test in Fig. 19;
MA and dashed line, for inflow as 
per test in Fig. 21.

Fig. 21. Experiment of 
turbulent inflow of gas into 
a vacuum. A rounded inlet 
permits to obtain a higher 
speed than that in the exper
iment show in Fig. 19.

Thus, Schardin's computations [84] referred to the experiments by Craz and Schardin 

[44] must be corrected since he used a rounded inlet as shown in Fig. 21, whereas his
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computations leading to the boundary value 5ĉ  were derived from conditions as shown in 

Fig. 19.

Earnshaw [49] in I860 found for the first time the numerical value for maximum flow 

velocity (5cQ). Seventeen years later it was independently found by Hugoniot in his well- 

known memoirs on the propagation of turbulence in a fluid [56], In this work he points to 
the significance of this computation for internal ballistics. The quantity 2cQ(k - 1) represents 

obviously the maximum valu-j of the speed of a projectile expelled by gunpowder gases in the 
case where the gunpowder burns up instantly and at the initial instant of the projectile's motion 

the gases are at rest and the speed of sound in them equals cQ [85].

Yu. B. Khariton and this author performed detailed computations of the motion of a 

projectile in a gun-barrel, computed the mass of the projectile that is required to obtain an 

assigned speed with minimal length of the gun-barrel, taking account of the fact that gun

powder combustion products are non-ideal.
It is interesting to note that maximum flow velocity in a steady flow in considerably less 

—  it does not exceed

«,_ = V 2 / . = y 'r ?r[c .

which, in the case that k = 1.4, yields u = c 0 ̂5 = 2.2e0f instead of 5cft in a turbulent flow.QjaX U

There are erroneous attempts in the literature to identify the maximum velocity of a pro
jectile with the quantity u* , which is considerably less than the actual value (Langweiler

D13X

[65)).
In the attempt to find from x/t the conditions that.describe the compression of gas by

a piston (a>> 0), we run into a major difficulty. Our equation leads to a condition in which

three values at once for velocity and pressure correspond to a number of coordinate values.
In fact, as before, the equations yield ̂  >  0; Formally, following the same procedure as the

«s
one when studying the expansion wave, we arrive at the distribution of pressure and velocity 

shown in Fig. 22.
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Fig. 22. Distribution of pressure 
and velocity having no physical 
significance, obtained in solving 
equations without dissipative forces 
in the case of the compression of 
a gas by a piston (see Fig. 18).

It is obvious that such conditions cannot be realized physically. This difficulty has 
inspired the theory of the shock wave which will be dealt with below.
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Chapter 7

Theory of Shock Waves. Introduction

In the preceding chapters we dealt with the cases where classic gas dynamics which 

operates with the concept of a continuous pressure distribution and uses differential 

equations to describe certain phenomena, but ignores viscosity and thermal conduction, 
runs into certain difficulties. Let us remind the reader of the nature of these difficulties.

In the chapter on sound propagation we established that the sound wave is subject to 
deformation as it propagates. The "wave crests", i.e., the places where the substance is 

compressed and moves in the direction of wave propagation, run ahead. Conversely, the 
"troughs", i. e., the expansion regions where the substance moves in a direction opposite to 

the propagation of sound, fall behind the wave as a whole. Thus, the sound wave, as it is 

deformed, lashes itself —  a phenomenon similar to the one observed when sea waveB run on 

a shallow beach.
We have mentioned several times 'hat the analogy between gas dynamics and phenomena 

occurring in liquids with a free surface has a very deep and far-reaching significance. In 
both cases there is a tendency towards a spontaneous increase in the gradients, toward a 
spontaneous formation of discontinuities during compression.

In the theory of outflow from a Laval nozzle we established that it is impossible to 
describe a number of intermediate regimes in a specific large region of counterpressure 

values by means of only the equations of continuous flew with constant entropy.
Finally, in the last problem investigated by us, namely, in the case of the motion of a gas 

caused by the sudden movement of a piston, this limitation of classical gas dynamics became 

particularly obvious. Thus we have seen that if the piston moves in the same direction of 

the gas, w >  G, and the differential equations of gas dynamics lead to absurd trivalent solutions, 

that is, solutions according to which in one and the same spot there must simultaneously exist 
three values for density, three values for temperature and three values for velocity.

All these cases indicate that there must be other forms of solution in gas dynamics which 

are not directly derived from the equations of ideal gases (ideal here refers to the absence 
of viscosity and thermal conduction).
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It can be expected that tor the conditions sought for a large value of gradients will be 

characteristic, so that in a given approximation they may be treated as the propagation of 

the discontinuity surfaces of velocity, pressure and density —  the so-called shock waves.

Before we go into the history of the problem of shock waves, we shall derive in an 

elementary form the equations of a shock wave, approximately in the same way as Hugoniot 
in bis well-known bode "On the Propagation of Discontinuities" [56]. We shall postulate the 
existence of a discontinuity (explosion), and shall not investigate how it was achieved, 

whether it is steady, and so on.
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Chapter 8

Hugonoit’s Adiabatic Curve. Its Derivation From the Equations of Conservation

We investigate a shock wave that propagates in a gas. We are not interested here in the 

precise structure of the shock wave front. We only assume that even if there is no discontinuity 

in the strictest acceptation of that term (Fig. 23a), the changes in pressure, density, etc., 
do take place in a very narrow region (Fig. 23b).

In our elementary derivation we shall confine ourselves to investigating the state of the 

substance before and after the passage of a shock wave through it. We apply the conservation 
equations to these states. We assume that the region proper of the wave A-B (Fig. 23b) does 
not increase in time. The values of pressure, density and other quantities inside the 
"discontinuity" itself, extended over the entire length of the segment AB, must drop out when 
setting up the conservation equations because although the wave travels, the amounts of matter, 

of energy and of motion contained in the wave between plane A and plane B are small and their 

change can be disregarded.

For the sake of simplicity we take a system of coordinates that travels along with the 

shock wave. In other words, we shall investigate a wave at rest into which through plane 
A there flows in matter in a state denoted by subscript 1 (on the left),*and from which on the 

right there is an outflow of matter the parameters of which are denoted by subscript 2. We

a b

Fig. 23, The ideal (a) and 
actual (b) structure of a shock

wave.
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set up the conservation equations for the assigned control surfaces. We also assume that
21the motion of the substance occurs normal to the wave's surface.

Velocity û , that is, the velocity at which the substance flows into the stationary 

shock wave, coincides obviously with the velocity at which the wave propagates with 

respect to the noncompressed initial substance, which is frequently denoted by O. Velocity 
Ug is the wave velocity with respect to the substance compressed in the wave. Finally, the 

difference û  -Ug, which is independent of the choice of a moving or stationary system of 
coordinates, is equal to the change in gas velocity at the passage of the shock wave. In 
particular, in the system in which the initial substance (index 1) is at rest, the velocity 

after the passage of the wave

|u|=n, —  u4; ut  =  D — \ a \ . (Vffl-la)

If we equate the amount of substance flowing in during a unit of tim e to the amount 

of substance flowing out, we obtain the f ir s t  conservation equation:

(V in-1)

Then, for the volume enclosed between A and B we set up an expression according 
to Newton's second law, and equate the change in the amount of motion during a unit of time 

to the impulse of pressure momentum. The amount of substance p^ Uj flowing in during a

unit of time ha6 a velocity û , ?o that the amount of motion flowing in during a time is equal
2 2 to Pjuj • The difference between the amount of motion of outflowing fluid PgUg and the

amount of motion of inflowing fluid (i. e., the increase in momentum) must be equal to the
pressure momentum which, referred to a unit of surface, amounts to - Pg. Thus we get

the second conservation equation

P, Q. Pj u,*. (V m -2)

Finally, ’ve set up the equation of energy conservation. In it we will have to consider 

three pairs of quantities, viz., intrinsic energy cf the inflowing and outflowing substance,
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its kinetic energy, and the work performed by pressure on the control surfaces A and B. 

Thus, in its definitive form, the amount of inflowing energy together with the work to
gether with the work performed by pressure on surface A is

Pi “i (Ei +  y )  +  Pi “i =  Pi “i (^i y ) =

=  Pi«i(A-»-!y)* (VIH-3a)

This expression must be equated to an identical equation with index 2, which will 

give us the amount of energy carried away by the outflowing substance during a unit of 

time, and the work performed by the gas against the pressure on the control surface B. 

By cancelling the obtained equation by the quantity P jUj = P2U2» e* • by referring all 
the quantities not to a unit of shock wave surface and a unit of time, as we did before, 

but to a unit of mass of the substance flowing through, we obtain the third fundamental 
equation in the following form

(Vm-3)

Here we have again introduced enthalpy I = E - * - p v = E - * - ~ - All the equations are 

symmetrical with respect to the permutation of the subscripts 1 and 2. From the three 
equations we can readily eliminate the two velocities û  and u2 in order to obtain the relation 

between pressure and density before and after the passage of the wave, which is known as 
the Hugoniot adiabatic equation.

From the two first equations, without using the equation of energy conservation, we

find

f i = £». t f « —  ?zPi~pi . 
P i f 1 Pi P i— ox »

u *__ n  t — Ot) (pt — ;>«)
• Pi®*

Pi Pi —Pi . 
01 P i — P i ’

(vm-4)

We substitute these expressions into the last equation and obtain the Hugoniot adiabatic 

equation sought
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(vni-5)2^rt (oi o j 0»i —M

or

^ ~ E> =  (Vm-6)

To obtain the relation between pressure and density after compression in the wave 

in an explicity form, we muct express enthalpy or energy in terms of pressure and density. 
For an ideal gas, the thermal capacity of which we take to be constant in the temperature 

interval between Tj and Tg interesting us.

/ = c, r = J / ? r = ^ = T i T f
22

we obtain by means of simple transformations the relation between density and pressure for 

a substance passing through a discontinuity, the Hugoniot adiabatic equation

9l__ (k-*-l)p2-t-(k— l)p i . pt  (fc -w )g t — ( t — l)g!
?i (* —  VPs -*■(*-*■ 1) Pi* Pi —  (*—  l)ft (Vm-7)

The equations can be simplified if instead of density we introduce everywhere the 

inverse quantity of specific volume

® »

Pt~Pt. * =  t7a£>Z£L
1  *  t r  g —  v  j

«» — a* = '/(P i—/»*)(«*— ®i)? 
«i*— “»*=(«! *♦- *i) (Pt"Pl)t (vm -8)

/ ,—It =  y  («i «j) 0 »i —

=  y  (»* — ®i) (/»i -♦ />*): (vm-9)

I t  (k-l)pt-*-(k-*-t)pi. Pt ( t - * - l ) p ,  — ( * -  l ) « i
*1 ( t i)p i~ * ~ {k — i)/>i* p i  {it-*-i)vj - (4—1)®* (vni-io)

A logically simpler derivation of Hugoniot's adiabatic equation (though physically 

completely equivalent to the preceding one) is the one where we proceed directly from the
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problem of the motion of a piston in a gas, dealt with earlier. In this case we need not 

operate with the concepts of energy flow and momentum flow, which may represent certain 

advantages for the inexperienced reader.
2Let us investigate a pipe with a 1-cm cross-section, closed by a piston at the origin 

of the coordinates. At the time instant t = 0 we begin to move the piston at a constant 

velocity w. We shall seek a motion pattern, shown in Fig. 24, where the discontinuity of 

all the quantities, density, velocity and pressure, propagates in front of the piston at a constant 

velocity D. On the right, in front of the discontinuity, the substance is completely undisturbed, 
and maintains its initial pressure Pj, its initial density p̂ , and is also motionless. In the 
interval between the piston and the discontinuity, the substance has some other values of 

density P2 and pressure p2, constant over the entire interval between the piston and the 

discontinuity. It also moves at a velocity equal to the velocity of the piston u = w.

2 Pt
P,

z
-a /

L--------- m ---------- 4  » x

Fig. 24. Distribution of pres
sure in space during the passage 
of a shock wave caused by the 
compression of a gas by a piston.

We investigate the state that arises after a time t. The discontinuity moves away at 

a distance Dt. The amount of substance compressed during that time is PjDt. Jt has to be 

equated to the amount of substance found in a gas compressed to density P2 between the piston 

that has moved the distance ut and the discontinuity

fraZ)f=ea(D— u)A
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This amount of substance has acquired a velocity equal to the velocity of the piston. 

The total velocity acquired by the gas enclosed in the pipe during the time t is p̂ Dut. We 

must now equate the increase in momentum to the pressure momentum, i. e., the product 

of the force equal to the difference between the pressure produced by the piston and the 

counterpressure of the unperturbed gas during the time die force is active

Finally, we equate the energy increase in the substance to the work performed by the 
piston, i. e., the work performed by the external force that moves the piston during time t.

It is obvious that these equations are completely identical with those derived earlier.

motion with respect to the system selected now. The discontinuity propagation velocity 

D was denoted earlier by û , so that now D = û , and piston velocity u = û  - u2> The proof 

that the last three equations (Vm-11, VIII-12, and VHI-13) lead to the same expression for 

Hugoniot's adiabatic curve (VIII-5, VIII-6), is left to the reader.

QlD u t = ( p a—p j t (v m - i2)

2Numerically the force for a piston area of 1 cm is equal to p̂ , the path travelled by the 

piston is ut, and the work performed is PgUt.

Thus we obtain the last equation, the energy equation

(Vm-13)

from which they can be obtained by switching, to a system of coordinates having a uniform
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Chapter 9

Properties of Hugoniot's Adiabatic Curve. Shock Waves in Air and Water.

Hugoniot's adiabatic equation derived above has a number of extremely interesting 

properties. First of all wo can readily see that with an unbounded increase of compression 

pressure p2, the density of an ideal gas with constant thermal capacity will not increase ad 

infinitum but will tend to a specific limit equal to (?,= -y^y For a diatomic gas with 

unexcited oscillations inside the molecule cy = 5 cal/mole x degree; cp= 7 cal/mole x degree; 

k = 1.4 and the limit value of density does not exceed initial density times 6. For a monoatomic 

gas the limit value for volume compression is 4.
Thus we see that in the case of strong compression, density increases rather slowly.

To this corresponds a slow decrease in volume and a correspondingly rapid increase of 

factor pv which determines the gas temperature.

Numerical computations fully corroborate the conclusion regarding the rapid increase 

of gas temperature with increasing pressure in a shock wave.
Figures 25 and 26 show the curves plotted by Leypunskiy which, depending on the 

pressure ratio p2/pj, give us all the quantities interesting us —  density after compression, 
all the velocities û , u2, Uj - u2 and sound velocity in the compressed gas. All velocities are

referred to sound velocity in the initial, unperturbed gas. The temperature of the compressed
/ 2gas can readily be found from the sonic velocity curve ~ (c2̂ cl̂ * <̂ ie computations have

been performed assuming a constant thermal capacity cy = 5 cal/mole x degree, cp = 7 cal/mole 

x degree, independent of temperature. Becker [38] gives us a table of tie state of air com

pressed by a shock wave.

Becker conducted his computations assuming that thermal capacity is linearly de
pendent upon temperature. Mean thermal capacity in the interval from 273° to T is ex

pressed by the formula

4*78

-*-o.45.io-*r.
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Fig. 25. Dependence of wave 
propagation velocity D, the 
velocity of compressed sub
stance u and wave velocity 
with respect to compressed 
substance D - u, on pressure 
amplitude in a shock wave in 
a diatomic gas with constant 

thermal capacity.

Check computations show that in the interval from room temperature to 3000°K this 

simple formula coincides with an accuracy up to 3% with the modern exact value for the 
thermal capacity of air calculated on the basis of spectroscopic data. In his table Becker, 

as a comparison, gives the temperature that can be attained with adiabatic compression 

(along Poisson's adiabatic curve with constant entropy) up to the same pressure.
It can be seen from the Table that compression of the shock wave leads with an equal 

pressure increase to a considerably higher compression temperature.

Direct calculations for an ideal gas with constant thermal capacity show that with 

compression in the shock wave, i. e., when P»>  PjJ p t > P i t u, >0; tft>0.
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the following relationships take place

«i>«r. “»<«** «$,>$,. (IX-2)

Fig. 26. Dependence of density 
and sound velocity c„ in a com

pressed medium, on pressure, 
under the same conditions as in 

Fig. 25.

In an expansion wave, if it propagated in the form of a discontinuity, in an ideal gas 
u, >  0; Uj >  0j : § <  o,j p t <  />,; the relationships would be inverted

« ! < « ! * .  U* > C2» *$1 < S r  ( I X - 3 )

In the case of absence of heat transfer to the outside, a drop in entropy i3 impossible, 

hence it follows that a expansion wave cannot propagate in the form of a discontinuity (the 

so-called Zemplen theorem [99, 55 . Below, as we will go deeper into the theory of shock 

waves, we will show the mechanism of entropy increase in a compression wave and its con
nection with Inequalities which refer to wave velocity û , u2 and sound velocity ĉ ĉ .

For an ideal gas with constant thermal capacity and a large shock wave amplitude 
P i ^ P i , the formulas become considerably simpler. We have already noticed that density
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after compression has a specific relation (k + 1/k - 1) to density before compression. The 

relations between quantities that characterize the state achieved after compression, approach 
a specific limit for — -*• c* (sic)

D : u : et  —  k 1 : 2 : 2kQc —  1). (IX-4)

The limit formulas include initial density but not initial pressure or temperature, upon 

which the final state does not depend in the case of a large amplitude

• I
2 P*v\ T 1 Piv , _  * — 1 Pi

ic-t- 1 *h-1/??, (IX-5)

Table 2

Pl/Pl ejQi r,°K T{p. S = const)| D h/cck .
a)

a m/ccb' a)
1 l 273 273 330 0
2 1.63 336 330 452 175
5 2M 482 426 698 452

10 3.88 705 515 978 725
50 6.04 2260 794 2150 1795

100 7.66 3860 950 3020 2590

500 11.15 12200 1433 6570 5 980
1000 14.3 19103 1710 9210 8560
2000 18.8 29000 2070 12900 12210
3000 22J 36700 2180 15 750 15050

Figures below the line are unreliable.

CODE: a) Sec

The propagation of shock waves in fluids has been scantily investigated. In his 

monograph on shock waves, Becker cites data on shock w*»ves in alcohol and ether. He 
performed his computations with the aid of Tamman's approximate equation of state.

Considering the importance of the study of shock waves in water with regard to under
water explosions of mines and torpedoes, the evaluation of the fundamental parameters of 

a shock wave as a function of pressure appears to be interesting.

85



The next Table gives the results of the computation of the propagation of a shock 

wave in water performed by Leypunskiy and this author [125].

Unlike Becker, we v.sed in our calculations the tabular data for compressibility, the 

expansion factor and the thermal capacity of the water, without resorting to the unreliable 
equations of state.

Bridgeman's measurements reached extremely high pressures, hence in the computations 

there was no need to use extrapolation. For the sake of convenience, the initial conditions 
were so chosen that the final temperature of the water compressed in the wave be 40°C. At 
this temperature, according to Bridgeman, the coefficient of thermal expansion of water a 

does not depend on pressure. This, of course, facilitates computations.

The energy equation (VIII-6) comprises the energy of water at very high pressures.
We computed with the aid of the thermodynamic relations

Tits—piiv== r { § ) 'J T +

us
dE—cf d T — «t Tv dp— pdv.

By integrating the last equation with respect to the path leading from a state with a certain 

energy to a state with energy to be determined, we find E.

Table 3

Pi k ° c ei Pi r t.°c *£ u D P| SC

1 40 1.008 1530 1 40 1.008 1530 0 1530 40
I 31.5 1.005 1500 3000 40 0.914 1890 150 1820 31.2
I 22.5 1.002 1470 6 000 40 0.859 2520 280 2070 21.21 1.8 1.000 1410 12 000 40 0.793 3200 490 2410 11
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In the first four columns of Table 3 we find quantities which characterize the initial 

state of the substance (prior to compression), and in the following four columns we find the 
state of the substance after compression. Then follows the propagation velocity of the shock 

wave in uncompressed water, D = Uj, and the velocity acquired by water during compression, 

u = Uj -u2 (see notations in Chapter 8).
The last column of the Table contains the quantity that characterizes dissipation processes 

and the damping of the shock wave in water. The quantity T'lg represents the initial tem
perature which is necessary so that by mean6 of isentropic compression from p1 to p0 oneX a*
can reach the state p9, Tg, v2 shown in the Table. The difference between T’lg and Tp re
presents the increased temperature reached on account of the irreversible processes in the 

shock wave front. Imagine a shock compression with p̂ to p2, followed by isentropic expansion 

to pressure Pp After the passage of a shock wave of assigned pressure amplitude (p2, fifth 

column in the Table) and of the expansion wave following it, the water temperature will rise
from T, to T' .1 is

This increase in water temperature occurred on account of an irreversible consumption 
of mechanical (kinetic and potential) energy of the shock wave and, consequently, is directly 

connected with the damping of the wave. The ratio ** ** ~ S - can be used as a standard for 

this damping.
We can readily see that also in this practical case the general relations are satisfied; 

wave propagation velocity is greater than sonic velocity in unperturbed water, D >  e,; wave 

propagation velocity with respect to compressed water is smaller than sound velocity in 

compressed water, D —  u <  c*.

Let us now look into some formal properties of Hugoniot's adiabatic curve.
Quite interesting and significant is the fact that the Hugoniot adiabatic equation cannot 

written in the form

fiPi, Qi)=f(p» Pj)- (DC-6)
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In this respect Hugoniot's adiabatic curve appears to differ from such simple curves aB the 

isothermal or Poisson's adiabatic curve. The equation of the latter is

S = S ( p , p) =  const, (IX-7)

which, for instance, for an ideal gas yields

S = *  cf in p —  e, la Q -+■ const; op"*= const • < f». (iX-8)

To exhaust all the Poisson curves it suffices to go through the one-dimensional 

series of value for entropy S. But to exhaust all of Hugoniot's adiabatic curves we must 
plc-f. an "infinity squared" of curves that correspond to every possible value of p̂  and ô .

That Hugoniot's adiabatic equation cannot be represented in the form f(p, 0) = const 
can be seen from the fact that by compressing, for examp'e, a diatomic gas two times by 
two shock waves, one of which propagates along the other, we can increase density up to 

36-fold, whereas in the case of a single compression density cannot be inci eased more than 

6-fold. Thus, double or, generally speaking, multiple compression by shock waves leads to 

a state that cannot be attained by single compression. However, in the case of isentropic 
compression, final pressure fully determines the final density of the substance, no matter 

how many stages were needed to reach the given final pressure, which follows from the 
possibility of representing Poisson's adiabatic curve in the form (EX-6'.

In the p, p plane or in the p, v plane, Poission's adiabatic curve is a curve in which 

all *he points are equivalent. None of the points is a singular point. With Hugoniot's 

adiabatic curve, however, this is not the case. The initial point ĉ , Pj (or v,, p̂ ) is a 

singular point of Hugoniot's adiabatic curve. The nature of this singularity will be determined 
in the next Chapter by studying the neighborhood of point Pj, Vj that describes the initial 

state of the substance prior to compression.
We write Hugoniot’s adiabatic equation

p=H(sr, r»  CiX
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From the symmetry of the conservation equations from which Hugoniot's adiabatic

equation was derived, it follows that if

/» ,= / /(e t; />„ P,), (IX-10)

then, conversely,

Pi-- W(?li Pv ffj

(see Fig. 28).

(IX-11)
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Chapter 10 

The History of the Shock Wave Problem

The equation of the connection between pressure and density in a substance subjected 

to the action of a shock wave, which was derived from elementary considerations and from 

the study of the conservations laws, led to an unexpected result, namely, the increase in 

entropy with compression of the ideal gas in a shock wave. Entropy increase follows directly 
from juxtaposing the initial and final state of the substance, which are associated with one 

another by the conservation equations. We did not investigate the processes that occurred 
between the control surfaces A and B (Fig. 23b) which led to entropy increase. Formally, as 

already mentioned, only the conservation equations are symmetrical with respect to D y p̂  

and P2, Pg* We could also satisfy the conservation equations by investigating the inverse 

motion, viz., a expansion wave in which expansion occurs within a small interval AB (which 
we shall not investigate closer) in accordance with the Hugoniot equation. In actual fact, 

however, such a motion is impossible since entropy would drop in it (this is the so-called 

Zemplen theorem [99] mentioned earlier). This particular feature of the result of Chapter 9 

where, without considering dissipation processes, we came to a change in entropy, creates 

specific difficulties in the understanding of the theory of shock waves which can be overcome 

only if we observe the processes inside the region of the change of state proper (between the 
control surfaces A and B, (Fig. 23b). Thie has held up considerably the evolution of the 

theory of shock waves.
It is remarkable that the first three most important works on the theory of shock waves 

were produced at different time periods but, apparently, completely independently from one 
another. We shall therefore investigate them not in their chronological order.

Riemann [81] set up for the first time two equations, one for the conservation of matter 
and one for the conservation of momentum. As a third equation he took Poisson's equation, 

i. e., he preassigns the conservation of entropy in a shock wave, similarly to the conservation 

of entropy in non-shock waves in which the effect of dissipation forces, viscosity and thermal 

conduction, is not considered. The relation between pressure and density obtained by him is
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pretty close to the real one, and so is the general picture of motion which he discovered. 

However, Riemann's equations do not fully satisfy the law of energy conservation. Hence we 
have to regard them as erroneous.

It is interesting that in the 1925 edition of the well-known book "Partial Differential 

Equat'ons in Mathematical Physics", compiled by Weber on the basis of Riemann’s lectures 

[97], even after the problem had been entirely clarified, he (Weber) expresses peculiar 
doubts as to whether or not Riemann's equations may still hold when considering turbulence.

The conclusion by Hugoniot [56], with whose name Eq. (VIH-7) is usuaUy associated, has 
been dealt with in the preceding Chapter.

We shall now take a look at Rankine's book [78], which is most interesting from the 

viewpoint of physical gas dynamics because the author has a deep understanding of the 
phenomena occurring in a shock wave.

Rankine examines a motion which could propagate ad infinitum without changing its 

form, i. e., he studies a turbulence that propagates steadily in a gas. He establishes two 

control planes (like we did when deriving Hugoniot's adiabatic curve) and sets up the law of 

conservation of matter and the law of conservation of momentum. Rankine studies a substance 

which has thermal conductivity but no viscosity. He formulates principles of self-modelling 
which are of the utmost importance for shock waves. Specifically, he emphasizes that 

numerically the coefficient of thermal conductivity of a substance may be infinitesimal, but 

we may not neglect it in a shock wave because the width of a shock wave as well as the magni
tude of the gradients are not pre-assigned. Hie smaller the coefficient of thermal conductivity, 

the greater we may expect the gradients to be in a shock wave, so that the product of the tem

perature gradient times the coefficient of thermal conductivity (equal to the amount of heat 
transferred by thermal conductivity in a unit of time) can remain finite as the coefficient itself 
approaches zero. This makes us thoroughly understand when we can ignore dissipation forces, 

in particular thermal conductivity, which is when the magnitude of the gradients is pre
assigned by the equations of motion without thermal conductivity. It also makes us thoroughly 

understand why we cannot ignore thermal conductivity when the magnitude of the gradient
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is not pre-assinged or predetermined. An example of the first case is a expansion wave for 

which we have plotted a solution assuming the absence of thermal conductivity. We found 

that the width of a expansion wave is of the same order as the distance covered by tur- 

bulance. The width of a expansion wave increases linearly in time, and in order of magni

tude is equal to

P

If we take this to be the first approximation since in the plotting of the expansion wave 
thermal conductivity and viscosity were not considered, and if we want to consider in the 

following approximation the effect of thermal conductivity and viscosity on the temperature 
and velocity fields found in the first approximation, then wc will see that all the gradients 

will rapidly grow so small that thermal conductivity and viscosity will have virtually no 

effect on the result. This, however, is not the case in a shock wave. Should we take as a 
first approximation an infinitely steep discontinuity, obtained when thermal conductivity and 
visconsity are equal to zero, then in the next approximation, introducing thermal conductivity 

and viscosity, we obtain infinite heat flow and an infinitely great increase in entropy. In the 

case of a shock wave where the equations of motion without thermal conductivity and viscosity 
do not give any specific value for wave width, the gradients and the wave width connected with 

them can only be obtained from the consideration of dissipative forces. The width turns out 
to be precisely such that it gives the increase in entropy required by the conservation equations. 

Conversely, if in a expansion wave with a finite width commensurable with the dimensions of 

the system we could disregard the effect of dissipative forces, then in a shock wave, in order 
that dissipative forces could give a finite increase in entropy, it is necessary that tae width 

of the shock wave should be very small as compared with the dimensions of the system.
Owing to this we can disregard dissipativo forces everywhere except on the surface of shock 

waves. These relations have been well explained by Rankine qualitatively for the particular 

case when the only dissipative factor is the thermal conductivity' of the substance.
Rankine’ b  further explanations suffer from excessive complexity. He does set up the 

energy equation quite correctly, but in the general case of an arbitary substance he does not
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express intrinsic energy in an explicit form as a function of pressure and density. Instead 

he uses general thermodynamic formulas which include entropy.

On the processes of heat transfer within the discontinuity, he imposes a condition,
| T J S ~  0, the physical significance of this condition is that in a shock wave there occurs 

only an exchange of heat between neighboring layers, so that the amount of heat removed 

from one layer is equal to the amount of heat received by the other one, which means that 

there arc no exterior heat sources.

It takes Rankine some effort to derive a system of equations equivalent to that in 
Chapter 8 from the combination with the general thermodynamic formulas, and he then 

writes the equations for an ideal gas. Thus, Hugoniot's adiabatic equation in its customary 

form (Eq. (VHI-10)), could be derived from the formulas contained in Rankine's work by 
means of elementary algebraic transformations. Let us remind the reader, however, that 

Rankine preceded Hugoniot's work by some fifteen years.
Rayleigh summarized in 1910 the evolution of the history of shock waves [79]. He 

particularly emphasizes the unfairness involved in the term "Hugoniot's adiabatic curve".

Among the occasional papers i t is interesting to note that as early as 1858 the 
English priest Earnshaw [49] came quite close to creating a theory of shock waves. Like 

Riemann he proceeded from the investigation of a compression wave of finite width in which 
(see Chapter 2) the wave crest overtakes the region of low pressure thus resulting in a 
discontinuity. However, the Reverend Earnshaw all of a sudden makes the surprising 

inference that nature does not suffer discontinuities or jumps. He makes some obscure 
statements on reflections, and implies that nature will somehow manage to prevent the 

formation of a shock wave or of a discontinuity. This is an educational example of the 

bad influence exerted by an erroneous philosphy on scientific research.
In a latter time, already after the discoveries of Riemann, Rankine and Hugoniot, the 

French scientist Pierre Duhem (one of the leaders of the "energetics" movement fashionable 

at the beginning of the twentieth century) denied the existence of shock waves on the assumption 

th«t in equations of gas dynamics involving viscosity and thermal conductivity there can be no
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strict discontinuity [46, 47]. Emile Jouguet, a pupil of Duhem, followed Rankine and pointed 

out that dissipation forces result in an exceedingly small width. If one disregards it, 

then one can speak of a discontinuity or a shock wave. Not only did Jouguet clarify 

Duhem's error, but he greatly contributed to an advance in the theory of shock waves and 

detonation waves [58, 59, 60]. Yet, to this day French authors, probably on account of 
Duhem's remarks, frequently speak of "quasi-waves", with a view on the finite width of 

the front.
Essentially we are dealing here with the general problem of the value and significance 

of approximate methods or approximate solutions in physics (see the remarkable paper by 
V. A. Foch [29]). This involves also the question as to when as approximate realization of 
some formulas or relations justifies the creation of new qualitative concepts.

Rankine also touches upon the problem of expansion waves, c.nd refers to an oral 
communication by Thomson according to which an expansion wave must be mechanically 
unsteady, in point of fact, however, Rankine already implies the impossibility of a expansion 

wave (and not its unsteadiness or instability). In fact, if we study the processes of thermal 

conductivity inside the wave then, besides the conservation equation written by Rankine,
J T d S = 0 , which states that in a process of thermal conductivity the amount of heat received 

by one layer is equal to the amount of heat released by other layers, we must take account, 
at least qualitatively, of the elementary fact according to which in the process of thermal 

conductivity heat always passes from a hotter body to a cooler one. Hence, of course, we 

get that in a shock wave entropy can only increase. Thus, were we to type to plot a 
expansion wave by inverting in a shock wave all the velocities, then inside the shock 

wave front, inside the "discontinuity" we would also run into the necessity of inverting the 
heat flow and achieve a transfer of heat from cooler gas layers to hotter ones —  which is 

impossible. We cannot but regret that these elementary considerations are sometimes 
ignored even in the contemporary literature (see Chapter 1 of Vlasov's book [3], which is 

otherwise quite valuable).
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Chapter 11

Graphical Methods of Shock Wave Theory. Waves Near a Critical Point

A very convenient aid for a simple investigation of shock wave theory is the re

presentation of processes and states on a diagram in which specific volume v is shown 

on the abscissa and pressure p is shown on the ordinate. We have already mentioned that an 
assigned initial point (point A, p̂ , v̂ , in Fig. 27) corresponds to one specific Hugoniot 

curve. Figure 27 shown how to find on a diagram the propagation velocity of a shock 

wave. We use a formula which gave us the shock wave velocity as a function of pressure 
and specific volumes before and after compression

1 (XI-1)

For the given initial state of the substance p̂ , the facto'* preceding the fraction
2Vj is a constant quantity, and the propagation velocities of shock waves corresponding to 
various compression stages, various final states, etc., depend on the ratio p2 - Pj/v2 - v̂ , 

i. e., on the tangent of the dip angle of the corresponding straight lines connecting the initial 

point p̂ , v̂  with the points representing the state of the substance after compression pn, v2. 
Thus, it is obvious from the diagram, that point C where pressure is greater than at point 
B, corresponds to a shock wave that propagates at a greater velocity because the angle of 

inclination of the straight line AC is greater than that of the straight line AB. It is quite 

important that Eq. (XI-1) was derived by us only from the first two equations, the equation 

of conservation of matter and the equation of conservation of momentum, independently of th« 

equation of energy conservation. Hence it will hold true in all cases where the equation of 
momentum conservation is not disrupted, i. e., when there is no interference from 
external forces of the kind of gas friction against walls. In all these cases and in particular 

also in the presence of a chemical reaction or in the presence of external heat sources or 

energy sources, which change only the energy equation but not the momentum equation, the 

relation between density and pressure in the initial and final state, and the propagation
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velocity remain j in force. In particular Eq. (XI-1) refers also to the speed of propagation 

of a detonation in explosive gas mixture [8, 59, 60].

Fig. 27. Shock wave propagation 
velocity is determined by the slope 
of the chord, for example, AC, AB,
AE. Sound velocity is determined 
by the slope of the tangent.
CODE: a) Sound.

Special interest should be placed on the fact that Eq. (XI-1) is obtained from compiling 
the equations of the conservation of matter and momentum only for the initial and final 

state of the gas in the wave. Use of the straight lines AC or AB for computing the velocity 
does not mean that it has been assumed that the intermediate states (see Fig. 23b) are re
presented by points on these lines.

Should we be interested in the intermediate state through which passes the compression 

inside a thin shock wave front, or inside the front of a detonation wave, or any oiher wave 
that propagates steadily in a gas, then, along with the external forces which may violate the 
law of momentum conservation, we must also consider the possible effects of internal forces 

of gas viscosity which are omitted in the juxtaposition of the initial and final states. If for 

any reason we can disregard the effect of viscosity or the effect of internal friction, Eq.

(XI-1) can be applied to all those intermediate states through which the substance
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passes on its way from its initial state to its final state. This is precisely the situation in 

a detonation wave where the wave width depends on the velocity of the chemical reaction 

and, generally speaking, is quite considerable, so that the effect of viscosity is small. A 

detailed discussion of the problem and a complete bibliography can be found in [6, 103].

In Fig. 27 we can also readily find the graphic representation of sound velocity.
Sound propagation is obtained as an extreme case of the propagation of very weak shock waves. 

Thus, sound propagation velocity on the diagram in Fig. 27 is given by the extreme 

inclination of the secant, when the second point representing the final state of the substance, 
approaches the first point to an infinitely small distance, i. e., it will be given by the 
inclination of the tangent to Hugoniot's adiabatic curve at the point representing the initial 

state of the substance under investigation.
We juxtapose Eq. (XI-1) for p2 - Pj and the expression fcr sound velocity c*= —  

and conclude that at the initial point Hugoniot's adiabatic curve touches the line of constant 

entropy (Poisson's adiabatic curve).

We can see that for an ideal gas with constant thermal capacity, for which Hugoniot's 
adiabatic curve has the form shewn in Fig. 27, the shock wave propagation velocity is 

greater than sound velocity in the initial gas D = u t >  ev By increasing ad infinitum the 

shock wave pressure we can, in the limit, obtain an arbitrarily great shock wave propagation 

velocity. Conversely, for a expansion wave in which the final state E in Fig. 27 lies below 
the initial state, the propagation velocity would be smaller than sound velocity. If at the 

final state of the compressed gas in a shock wave, for instance, at point B we plot Poisson's 

adiabatic curve or Hugoniot's adiabatic curve touching the latter at this point, we can like

wise determine the relation between shock wave velocity and sound velocity in a compressed 
gas. For wave propagation velocity with respect to compressed gas we have

u * = ( P — u)t =  v * Pl—Pl.t
vz ~~vl (XI-2)

an expression which is completely symmetrical with the expression for wave velocity with
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respect to the initial gas. In Fig. 28 we have plotted through B Hugoniot's adiabatic curve

V  for which state B has been taken as the initial one. According to the symmetry of
23equations, if B is on then Hg passes through point A (see Eqs. (IX-10, 11)). At 

point B, curve Hg touches Poisson's adiabatic curve. From the position of lines Hg and 

straight line BA in Fig. 28 it follows that «t>Uj =  D — u, and sound velocity in a gas com
pressed by the wave exceeds the wave velocity with respect to the compressed gas.

Fig. 28. The relation be
tween wave propagation 
velocity with respect to 
initial state A and sound 
velocity in state A is given 
by the relation of the incli
nation of the chord AB and 
the tangent to curve at 
point A. The relation of 
wave velocity with respect 
to the compressed substance 
in state B and sound velocity 
in state B is given by the 
relation of the inclination 
of AB and the tangent to 
curve Hg at point B. A 
direct comparison of 
velocities with respect to 
the various states is inad
missible since the coeffi
cient introduced in the 
transition from inclination 
to velocity depends upon 

specific volume v

98



In the pv diagram we can analyze the problem of entropy increase lu a shock wave. 

We correlate the expression for the change in intrinsic gas energy in a shock wave with 

the general thermodynamic expression for energy differential. In a shockwave

=  pew )24

But in the general form d£ = T dS - p dv. Along Poisson’s adiabatic curve (the isentropic 

line) we would have with a change in volume within the same limits

dS= 0
H

E2' — El =  & 'E = — \p d v . (XI-4)

We correlate the expression for the change of energy along Poisson's adiabatic curve (P) 

with the expression for the change of energy for shock compression along Hugoniot's 

adiabatic curve (H) and obtain the equation for the quantity A 3 of entropy change for shock 

compression

T & S = — — »j) — |  pdv.
* (XI-5)

Integrals (XI-4) and (XI-5) are taken along Poisson's adiabatic curve.
We investigate the relation between two terms of the last formula in Fig. 29.

Ai

Fig. 29. Entropy increase with 
compression in a shock wave AB 
depends on the sign and the size 
of area AFBCPA. AHB is Hugouot's 
adiabatic curve, and APC is Poisson's 
adiabatic curve.
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in this Figui'e, APC is Poisson's adiabatic curve (the isentropic line), AHB is

Hugoniot's adiabatic curve, the change in entropy during compression by the shock wave

is S a— S a = S m— Sc  and, according to Eq. (XI-5), it depends upon the difference between

the area of the trapezium AFBNM and the area limited by Poisson's adiabatic curve APCNM.
25The product of absolute temperature times entropy increase is equal to the difference 

between these areas, i. e., the area of APCBF.

We divide this area into two parts by the straight line AC. The first part is a segment 
the extreme points of which A and C are enclosed by segment APC of Poisson's adiabatic 
curve chord AC. The second part is the triangle ABC.

We write the equation in the following form, and denote by F the area of the Figures

T A S — F $egm. *rc~*~Ftri. i»f- (XI-6)

The area of the trinagle is easy to find. If segment BC is the base of the triangle, 

then its height is - Vg. The length of BC in the p, v plane is (I s ) , and the area of

the trinagle is

t ( S ) > — ^

By substituting this into the initial equation, we find

T /J5=Segm.-t- {% )'& >  — fa) AS, (XI—7)

J 5 — ,
T — a (XI-8)

where a =  ^  (vt -

In the case of slight volume changes, virtually '/AS— Fsegm  » and the correction 
for the triangle area is small. If A S ~  (c, —  v,)\ then the triangle area ~  J.S (v} — v j  —

~  (v, —  Vj)™'1 is of hî ier infinitesimal order as compared with A S and, consequently, also 

of a higher infinitesimal order as compared with the area of the segment.

It follows that the sign of the change of entropy is fully determined by the sign of the 

segment area, i. e., by the reciprocal position of Poisson's adiabatic curve and its
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secant, which, in turn, depends on the convexity or concavity of Poisson's adiabatic curve, 

that is, on the sign of the second derivative If oc approaches T, then AS approaches

infinity, which actually takes place in an ideal gas with vt -> o„ when on Hugoniot's 

adiabatic curve p approaches infinity. 7*< « corresponds to negative pressure and 

similar conditions which in the given case are devoid of apy physical significance.

For weak waves we can now easily find the extreme laws of entropy chang* in a shock 

wave. We expand all the expressions in a power series v - v - v̂  and leave everywhere only 

the senior term which gives us a final result different from zero.
Poisson's adiabatic equation is

*

P —Pi-*- ( -£)S t t£ ) s. i * (XI-9)

The second subscript shows that the values of the derivatives are taken at state 1 
(point A, Fig. 29).

26We write Avi= v t — vl =  a>, find pressure p'g at point C (Fig. 29), omit the sub

script of the derivatives and get

, ip 1 s*p .
P*' =  Pi -*--£<'> +  -2 £  «’• (XI-10)

We write the expression for entropy change, disregarding the area of triangle ABC 

in Eqs. (XI-5, XI-6, and XI-7)

" s = ¥ -  ( -  »> -  j U i »  -  -  ,V (& } .« * =

— J_ OLe. t \s—  12 \vi —  vtJ • (XI-11)

By correlating Hugoniot's adiabatic equation in the form

(XI-12)

with the expression DI = T dS + v dp, we can interchange p and v in all the preceding
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27considerations. Thus we get

^ A S —  "ii I p i 0 »t~ P i ? ~  J 2 's f  (— J j )  ( P t - P i ) * -  (xi-1 3)

In a weak chock wave, entropy change is proportional to the cube of the amplitude.

At the initial point Hugoniot's adiabatic curve touches Poisson's adiabatic curve. At that 

point these curves have a mutual tangent and a mutual curvature center (second order 

tangency). Tangency is accompanied by intersection (see continuation of curves for 
in Fig. 29).

Jouguet [58] obtained these results for the first time without resorting to the simpler, 

geometric treatment. Since Jouguet's more complete work was published before Zemplen's 

communication [99] (in the second note in the 142nd volume, Zemplen remarks that he should 
have quoted Jouguet) the generally accepted custom of calling the proof of the impossibility 

of discontinuous expansion waves the "Zemplen theorem" is totally incorrect and unfair.

In studying Eq. (XI-11) we establish that for an ideal g?>s Poisson's adiabatic curve is 
28everywhere convex toward the abscissa. This leads us to the conclusion that entropy 

increases in a compression shock wave. Conversely, in a sharp expansion wave to which 
the conservation equations were applicable, entropy would drop, ehence we immediately 

see that in an ideal gas the propagation of a expansion wave with a thin front, similar to 
a compression shock wave, is impossible.

For weak waves, Fig. 29 makes it possible in a completely general form, that is, 

for an arbitrary equation of state of the substance, to conclude that there is a relation 

between shock wave propagation velocity and sound velocity in the substance before and 

after compression. For compression to propagate in a gas in the form of a shock wave 

with an extremely steep front, it is necessary that Poisson's adiabatic curve by convex 
downward, i. e., have the form shown in Fig. 29. In this case, however, it is geometrically 

obvious that the inclination of the tangent toward the adiabatic curve at point A must be 

smaller than the inclination of the secant AB. Conversely, the slope of the tangent at 

point B, which represents the final state, or the slope of the tangent at point C (which is
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extremely close to B) is greater than the slope of the secant.Thus, we obtain the 

elementary conclusion of the relation found for the first time by Jouguet, according to 

which compression propagates in the form of a shock wave if sound velocity before 

compression is smaller than the propagation velocity of the shock wave found from the

conservation laws, and sound velocity iu the substance after compression is greater than
30shock wave velocity with respect to the compressed substance. In the case of Poisson's 

adiabatic curve, which has an inverted concavity (Fig. 30, section AB), compression in the 

shock wave would be accompanied by a drop in entropy since the area bounded by Poisson's 
adiabatic curve is greater than the area bounded by the secant, the verticals and the 

abscissa. Jta a substance in which Poisson's adiabatic curves have an inverted sign of 

concavity, the compression waves will not be stronger. For instance, a compression caused 

in any portion of the substance by the movement of a piston propagates in the form of a wave 

that gradually expands like the expansion waves in an ideal gas discussed earlier. Conversely, 
in such a substance an expansion wave propagates with an extremely steep front, the steepness 

of which does not decrease in time and is determined by the small values of thermal con

ductivity and viscosity. This corresponds to an inverse relation ratio of between shock 
wave velocity and to sound velocity. In fact in an expansion wave in which the original state 

is represented by point A, and the final state by point B (Fig. 30), the propagation velocity 

AB with respect to the substance at state A is determined by the slope of the straight line 

AB and exceeds sound velocity at state A. This can be seen from the nature of the intersection 
of the adiabatic curve and the secant at point A, where the tangent to Poisson's adiabatic 

curve has a flatter slope that straight line AB. Conversely, at point B, that describes the 

state of the substance after the passage of a steep expansion wave the speed of sound exceeds 
the speed of propagation of the final disturbance.

Are there such substances in nature in which, at least in some portion of the p, v 

plane, Poisson's adiabatic curves have a convexity directed upward? We may expect to 

find such a state near the critical point of a fluid, which is a gas. In fact, long before that 

critical point, the isothermal curves have an inflection (at the very critical point, the inflection of
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an isothermal curve becomes horizontal); for a substance with a sufficiently high molecular 
heat, in which the isothermal and adiabatic curves differ but slightly, we can expect 

that outside the region of biphase systems, in a state in wh' ĥ the substance is steadily in 
one phase, the adiabatic curve will also have an inverted sign of the second derivative. The 

relation between the structure of a compression wave and an expansion wave will become 

inverted as compared with the relation between a sharply outlined compression shock wave 
and a blurred expansion wave in conventional gases far away from the critical point.

Fig. 30. Poisson's adiabatic 
curve with an anomalous con
vexity directed upward. In 
that section, expansion shock 
waves are possible.

In Fig. 31, in the plane p, v, for the case cy = 40 cal/degree mole, we have 

plotted line n that divides the region with 0, the adiabatic curve passing through
this region, and line I that divides the batched area of biphase systems (the latter does not 

depend on the quantity c^. Computations have been performed with the aid of F. Ye. Yudin 

(Combustion Laboratory KhF.)
In the Van der Vaals equation, thermal capacity with constant volume depends only 

on temperature in the entire region of monophase systems; the energy of a homogeneous 

substance given by the Van der Vaals equation, can be written in the form of a sum
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of two terms

£ =  £i(7> ' ‘ £ » = ] c. dT~  T~

This considerably facilitates computations since the entropy of a Van der Vaals gas 

can also be represented in the form of the sum of the temperature function and the specific 

volume function. It would be very interesting to study experimentally the shock waves and 

expansion waves in a gas with great thermal capacity in the region where we may expect the 
existence of the aforementioned anomalies.

For this purpose one can take a high-molecular organic compound that does not de
compose at critical temperatures.

Fig. 31. Adiabatic curves with anomalous 
convexity in a Van der Vaals gas with thermal 
capacity cg = 40. The hatched area re
nt csents the biphase systems; curve n limits 
this area of anomalous convexities. Below 
cur\e <0-
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CODE: a) Adiabatic curve, b) biphase fluids and vapor.

The establishment in a general form of a relation between sound velocity in a substance 

before and after the passage of shock wave, and the change of entropy in a shock wave is 

quite satisfying since it is obvious (see Thomson's remark quoted in Rankine's paper [78]) 

that the relation between shock wave velocity and sound velocity determines the mechanical 

steadiness of the wave. It is essential that the shock wave propagate at a velocity exceeding 

sonic velocity in the gas subjected to its effect, in order that the disturbance caused by the 
shock wave does not precede it at a velocity equal to that of sound. It is also essential 

that the shock wave propagate with respect to compressed gas at a velocity less than sonic 
velocity iu the compressed gas, because only in this case can we imagine a causative relation 

between the motion of a piston producing a shock wave and the propagation of the shock wave 

since the disturbance is transferred from the piston to the shock wave front across a layer 
of compressed gas. The same criteria ci <  uu c:_> ui will be encountered when studying 

the onset of shock waves. It is very significant that these perceptible criteria of the me
chanical steadiness of a shock wave can be strictly associated with the sign of entropy 

change in a shock wave. In general terms this determines the possibility or impossibility 

of the propagation of a shock wave that satisfies the laws of the conservation of matter, the 

conservation of momentum and energy.
The relation between the sign of AS and the inequalities regarding sound velocities 

will be violated only in the case where iD the pressure change interval under study there 

occur both signs of <Ppftu*, so that Poisson’s adiabatic curve has more than two points of 

intersection with the straight line. Study of the complex conditions under which there 
occur simulatoeously discontinuities and dissipated waves adjoining them exceeds the scope of 

the present monograph.
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Chapter 12 

Structure of Shock Wave Front

We shall now investigate the thin layer of a shock wave inside which there occurs the 

transition from one state to another, i. e., the layer between control surfaces A and B in 

Fig. 23b. We have not yet discussed the processes taking place inside that layer because 
its thickness, determined by dissipation forces, is extremely small and the results of the 

processes occurring there can be determined from the conservation equations without a 
thorough stud}'' of the processes proper.

Here, however, we are specifically interested in the processes occurring inside the 

layer, and also the thickness of that layer. We shall study separately two extreme cases: 
Case 1, of extremely small viscosity, and case 2, of very small thermal Cv'nductivity. 

The mathematically (but not physically) more complex case of a simultaneous effect of 

viscosity and thermal conductivity will not be investigated. For it we will give only the 
final expression for the thickness of the transition layer.

The first case is remarkable in that Eq. (XI-1)

which combines the change of density, the change of pressure and wave propagation velocity, 

turns out to be applicable not only for the final state attained during compression, but also 
to all the intermediate states within the layer.

As a matter of fact, this equation is the consequence of the first two conservation 

equations, namely, the conservation of matter and momentum.
The equation of conservation of matter in a simple form (VDI-1)

qu =  “  =  const

is always satisfied for the propagation of a plane wave. When the wave travels in a pipe, the 

cross-section of the pipe must be constant. Moreover, the pipe walls must not absorb or
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eliminate matter. To satisfy the momentum equation for the initial and final state in the 
simple form (Vm-2)

p -f- QU* s® const

the substance must not be affected by external forces. During propagation in the pipe, we 

must disregard friction against the pipe walls. Finally, in studying the intermediate states 

interesting us here, Eq. (VDI-2) can only be satisfied if the forces of internal friction 

(viscosity) are small.
In a shock wave travelling through a medium in which there only occur processes 

considered by the energy equation, for instance, energy release from a chemical reaction 

(detonationwave, see [8, 59, 60]) or thermal conductivity, Eq. (XI-1) can be applied to all 

intermediate states. Taking the propagation of a shock wave as a whole, the speed at 
which each intermediate state moves with respect to the initial state is identical. In Eq. 

(XI-1), the quantity D must be considered constant. Thus, this equation leads to a linear 

relationship between pressure and volume

P (XU-1)

In the p, v plane (Fig. 32) the state changes along the straight line that connects 

the points describing the initial (A) and the final (B) states of the substance.

If we know the relation between pressure and density that is valid for the entire shock 

wave front, we can find its width by means of elementary integration.

It can be shown that along straight line AB entropy attains maximum somewhere in the 

middle (point M, Fig. 32) between the initial and the final states of the substance.

As a matter of fact, at point A the speed of the wave with respect to the substance 
is greater than sound velocity, and at point B the speed of the wave is less than sonic speed. 

At some point M  wave velocity equals sound velocity. At this point the straight line AB 
touches Foisson's adiabatic curve, and, consequently, entropy is maximal. 31
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If we assume that there is no viscosity, 

entropy changes only on account of thermal con

ductivity. Under steady-state conditions, in a 

system of coordinates in which the shock wave 

itself is at rest, we can readily change from

Fig. 32. A and B are the initial and the 
final state of the gas compressed by a 
shock wave. The solid lines are 
Poisson's adiabatic curves, i. e . , lines 
of constant entropy that increases from 
Sa to Sg and S^. In the absence of
viscosity, but in the presence of ther
mal conductivity, the state changes 
along straight line AB on which entropy 
attains maximum at point M. In the 
absence of thermal conductivity, but 
in the presence of viscosity, the state 
changes along the dashed curve AB, on 
which entropy monotonically increases 
from A to B. Hugoniot's adiabatic 
curve is not plotted here (it also runs 
through A and B but does not coincide 
with the dashed line).

the substantial derivative with respect to time 

to the derivative with respect to the coordinate. 

In this case the sign of the partial derivative is 

superfluous since the process under study is 

stationary in the system selected, and does 

not depend on time. Finally,

dV
dx (xn-2)

where X is thermal conductivity of the sub

stance. The temperature, at least in a weak
shock wave, changes monotonically along straight line AB.

The solution sought, the distribution of temperature and entropy as functions of the 

coordinate, takes the form shown in Fig. 33. The point at which entropy attains maximum 

values coincides exactly with the inflection point of the dependence of temperature on the

coordinate.

Fig. 33. Internal structure of a 
shock wave of small amplitude ;n 
the presence of thermal conductivity, 
butwithout viscosity. Notations are 
the same as in Fig. 32.

♦
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From the preceding chapter we can readily find the order of magnitude (considering the 

change in volume during compression a quantity of first order of smallness) Apt AT 

first order, proportional to dy; second order, proportional to

(do),1 St —SA—third order, proportional to (Ay) . It is easy to evaluate the width of 

the shock wave front by integrating (XII-2) up to point M

— Tu(SM— SA) =  A( ^ ) J f • (XH-3)

For oar evaluations it follows that

j j __42* • Av i
A T  ~   iT t ~  A ~  —  •sM —sA ( 4 u ) »  At, (Xn-3a)

For the determination of Ax, in accordance with the last formulas, see Fig. 33. We 

establish the order of magnitude of the coefficient from

R cAv* (XU-4)

where R, the gas constant, is in cal/degree x gram, v and c are selected to give the 

length.

Figure 33 is a concrete representation of Rankine's ideas [78].

It is  interesting to note that in the case of very strong compression, there arises a

rather peculiar fundamental difficulty, which consists in that on line AB between points A

and B maximum temperature is attained only if pressure in the shock wave P_ exceedsIS
1.5 P . (with c /c  = 7/5 for a diatomic gas). Maximum temperature is reached at

A  p  V

higher pressures than maximum entropy.

In the presence of maximum temperature it turns out to be impossible to plot a 

continuous distribution of temperature and entropy in space that could satisfy the funda

mental equation (XH-1).

Rayleigh [79] has shown that because of this difficulty it becomes necessary to con

sider also viscosity. However, the effect of m olenlar viscosity changes not only the
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energy equation, but also the equation of motion (our Eq. (VHI-2)). Thus, in this case the 

line of tiie system in the p, v plane deviates from line AB. Becker [38] made the same 

considerations at a later date, but without mentioning Rayleigh (referring, however, to a 

private communication by Prandtl, see also [76]).

In the second extreme case, in the absence of thermal conductivity and the effect of 

viscosity alone, entropy in the wave changes only on account of the conversion into heat 

of work performed against viscosity (see Eq. (1-18)).

According to this last equation, entropy under the effect of viscosity increases 

monotonisally. The change in state on the p, v diagram is shown by a curve enclosed be

tween Poisson's adiabatic curves which pass through the initial and final points (dashed 

line in Fig. 32). We introduce again the concept of effective width

From Eq. (XII-5) we readily find (we identify D and c by their order of magnitude)

and note that ut — ul =  D- Av/v,

Deviation from straight line AB occurs because of viscosity momentum. The equation 

of steady motion for one coordinate is

(XII-5)

d* a; —aA
dx Ax (xn-6)

(xn-7)

(xn-8)

(xn-9)

(xn-io)

m

o n
Wie integrate and find



but from the continuity equation we find

u? =  -  =  M- -  const; — =  M ^ . (XU-11)

2  <fvp ■+■ Mv h- y  ijM-£ =  pi -i-Mv± =  Pg-t- Mvg =  const. (XD-12)

without the term y  »j A /y j, the equation yields the straight line AB.

If in accordance with Fig. 32 ) ,>  0. then the dashed line enclosed between adiabatic

curve S = and S = Sg, runs entirely below the straight line, so that in the wave

p -i-Mv < p A -»- Mva. (XH-13)

In this case from the equatix* wo find t)M < 0 , v in the wave decreases, and compression 

occurs. An expansion wave would require negative viscosity. By investigating the structure 

of the wave front under the effect of viscosity we came to the same conclusions regarding 

the possibility of compression or expansion waves with the sign which we reached

earlier by following another method.

In the case of complete absence of thermal conductivity, a decrease in the viscosity 

factor leads only to a decrease in the front width, so that there is an increase in derivative 

du/dx, i) 77 remains constant, and the line in the p, v plane does not change.

With thermal conductivity the decrease in front width and the increase in the derivatives 

with respect to x with decreasing viscosity will be limited. With a sufficiently small rj, the 

entire term T) du/dx will be small, and we approach the satisfaction p + Mv = const, i. e . , 

the equation of straight line AB (see, incidentally, our earlier remarks concerning strong 

shock waves in which on a segment of straight lin^ AE maximum temperature occurs. In 

this case in a specific portion of the wave front it is viscosity, no matter how small it may 

be, that determines the magntude of the derivatives).

To evaluate the order of magnitude of front width, we use the molecular-kinetic 

expression for the coefficient of thermal conductivity and the viscosity factor. In both
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extreme cases we readily find

& x ~ l  4 -  -»n  ■»-■« (x n - i4)

where 1 is  the length of the free path of the m olecules In tile gas. ^

For air at atmospheric pressure, taking the Pandtl number (the ratio of kinematic 

viscosity to thermal diffusivity) to be equal to 1, Taylor [93, 24] with the aid of diffusion 

coefficient B gives the following expression for the width of die shock wave front

d x = - “ * - .
■i—** (xn -15)

o
For air at atmospheric pressure B = 0.18 cm /sec,

Ar=— ^-= 4 .10 -*  — (Ax— cm, u—cm/so c , Af —ara). (XU-16)

All the estimates unanimously indicate that in shock waves in which and Ap~~p 

the width of the front is of the order of the length of the free path. Under such conditions, 

detailed computations of the structure and the application of the differential equations of 

hydrodynamics become meaningless.
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Chapter 13

Propagation of Shock Waves In a Gas with Delayed Excitation of 

Internal Degree of Freedom

In Chapter 2 we investigated the propagation of sound in a gas with delayed excitation

of the internal degree of freedom, 1. e . , in a gas in which thermal capacity, with extremely 

rapid changes in state, is considerably less than with slow changes in state or with slow 

changes in temperature. This dependence of thermal capacity on the rate of the change 

of state, this delayed excitation of thermal capacity may be due either to a difficult transfer 

of energy to the internal degree of freeden, or to *\ reversible chemical reaction. In thermo* 

cynamics, additional thermal capacity due to a reversible chemical reaction whose 

equilibrium shifts with changes in temperature or pressure, is equivalent to a delayed, 

excitation of the internal degrees of freedom. Conversely, the case of a reversible 

chemical reaction has nothing whatsoever in common with the irreversible flow of a 

chemical reaction in a shock wave, i. e . , with the phenomenon of detonation, which will not 

be discussed here.

As mentioned in Chapter 2, the delayed excitation of a portion of thermal capacity 

leads to two fundamental peculiarities of the acoustic behavior of a substance. First, it 

leads to sound dispersion, i. e . , to the dependence of sound velocity on frequency. High- 

frequency sound propagates as if thermal capacity were small. In low-frcquency sound with 

a long wavelength, the state changes very slowly. Thermal capacity has time to be hilly 

excited and, consequently, sound velocity is  decreased. Simultaneously with sound dis

persion, there may occur an exceedingly powerful sound absorption. As one researcher 

occo said, in a specific frequency range the gas develops an "opacity" to sound. There 

occurs absorption due to the fact that the intrinsic energy of the gas does not change in 

phase with its pressure or specific volume, i. e . , it changes all the time in a state which 

is far from being in equilibrium, it changes irreversibly. The delayed excitation of a 

portion of thermal capacity is one of the possible mechansims of dissipation (dispersion) 

of energy.
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We Investigate the propagation of a shock wave in a gas with a delayed excitation of 

a portion of thermal capacity. In the p, v plane (Fig. 34), we can trace through a given 

point A(PqVq) which describes the initial state of the substance prior to compression, two 

Poisson adiabatic curves, i. e . , two insentropic curves, one of which occurs with an 

extremely rapid compression (dashed line, u)= oo), and the other, steeper one, occurs 

with slow compression and full excitation of the entire equilibrium thermal capacity of the 

substance (dashed line, to = 0). If we are interested in the propagaticn of shock waves 

over long distances (we shall see later what is the natural scale of this problem and with 

respect to what distance may be considered great), the control plane on which we fix the 

state of the gas subjected to compression, can always be set at a sufficient distance from 

the spot where compression began, so that there will always exist a region in which all 

internal degree of freedom and the entire intrinsic thermal capacity are fully excited. As 

we place the control plane, Fig. 23b, in that spot, we obtain from the conservation equation 

a Hugoniot adiabatic curve with full excitation of the internal degrees of freedom (solid line 

AMC, co = 0). Consequently, this curve at point A touches at point A the flat Poisson 

curve which corresponds to low frequency, and only farther, at considerable compression 

values, moves away from it and runs steeper.

It can be seen from Fig. 34 there can be different cases depending on pressure from 

compression in a shock wave. A weak shock 1 (in which the final state after compression, 

after complete excitation of all the internal degree of freedom, is described by point M on 

Hugoniot1 s adiabatic curve, co= 0) must propagate with a velocity that is less than sound 

velocity at high frequencies. Which will be the structure of such a shock wave.

If in the comparatively weak shock wave 1 under study there occurred in some section 

of the front an extremely rapid and abrupt change in state, then to this change we could 

also apply the conservation laws. However, in the case of a rapid change of state, the 

excitation of external degrees of freedom has no time to occur. Such a change of state may 

be called "a shock wave without excitation".
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A Hugoniot adiabatic curve plotted without consideration of the internal degrees of 

freedom, i. e . , for an extremely rapid compression, must lie higher than the corresponding 

Poisson's adiabatic curve (the solid line AB, go = go in Fig. 34). The propagation velocity 

of this "shock wave without excitation" is obviously greater than sound velocity at a high 

frequency, and, consequently, it exceeds all the more low-frequency sound velocity, and 

even exceeds the velocity of sufficiently weak shock waves with excitation.

P Thus, in the mode sought for, in order 

that it be stationary (if it is stationary), if all 

the parts of the front move at the same velocity 

with respect to the gas and conserve the distance 

with respect to one another at a constant front 

structure, there can be no abrupt pressure increase 

or abrupt changes in volume in a weak wave. We 

may say that from a slowly propagating distur-

9

Fig. 34. Propagation of a shod: wave in 
a gas with delayed excitation of a part 
of thermal capacity. Hugoniot's adiabatic 
curve (solid line) and Poisson's adiabatic 
curves (dashed line) are plotted on the 
basis of two assumptions, the absence 
of excitation (w = co) of a portico of 
thermal capacity, and total excitation.
The chord of Hugoniot's adiabatic 
curve ts> = 0 intersects or does not 
intersect the adiabatic curve go = cu de
pending on amplitude.

bance, a slowly moving shock wave, there will 

continuously emanate high-frequency sound waves 

the velocity of which will exceed the velocity 

of the shock wave owing to sound dispersion. These 

waves, however, dampen very quickly, indeed they 

dampen exponentially ahead ox the shock wave. The 

accumulation cf an infinite amount of damping 

sound waves forms a "washed-out" front of a weak

ehock wave. We can find the exact structure of

the front by ignoring in this case the effect of viscosity and thermal conductivity. The state 

of the substance changes along straight line AM. The rate of this change depends on the 

excitation rate of the internal degrees of freedom. It is qualitatively obvious (and it can be
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corroborated by fairly simple computations) that the effective front width of such a shock

wave which propagates at a velocity less than the velocity of high-frequency sound, depends

on the excitation rate of the internal degrees of freedom. In order of magnitude, the front

width Is equal to the product of sound velocity times the excitation rate of thermal capacity

(see Fig. 35a). This width may exceed many times the width of the front obtained from the

effect of viscosity and thermal conductivity. Thus, in the case of carbon dioxide, total

thermal capacity with slow excitation amounts to 3.3. cal/mole x degree, of which 2. 5

cal/mol x degree represents the thermal capacity of rotational and progressive molecule

motion, excited instantly, virtually with every collision between molecules. The remaining

0.8  cal/mole x degree is oscillatory thermal capacity excited, as an average, once every

600,000 collisons [62], At high frequencies, sound velocity exceeds by 4% sonic velocity at

low frequencies. In carbon dioxide, a shock wave caused by the motion of a piston at a

velocity of approximately 13/sec, in which a compression by 5% is attained (pressure

increases by 7%), propagates in the gas at a velocity which is still 1% less than high-frequency

sound velocity. By computing from Prandtl's [76), Rayleigh's [79], Taylor's [93] and

Becker's [38] formulas (Chapter 12) the width of such a shock wave in air, where it depends
-3on thermal conductivity and viscosity, wre get at atmospheric pressure 8 x 10 mm, and 

0.4 mm at a pressure 15 mm Hg. In carbon dioxide these values would be even smaller. 

However, the width of a shock wave in carbon dioxide, where it depends on delayed excitation, 

amounts according to a rough computation to 12 mm at atmospheric pressure. At a pressure 

of 150 mm Hg, the width reaches 60 mm. Such a sharp change in the width of the shock wave 

can be noticed when studying the front structure by means of Topler photography when com

paring photographs in gases, such as air, in which there are no such effects, and photo

graphs in carbon dioxide.

In the case of a strong shock wave (2 in Fig. 34) we must expect more complex modes 

(see Fig. 35b). Discontinuity AB, the width of which is determined by vicosity and thermal 

conductivity, and is thorefore extremely small, propagates without a noticeable excitation 

of the internal degrees of freedom, point B lies on the corresponding Hugoniot adiabatic
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Fig. 35a. Structure of a shock wave of
small amplitude (AM) in a gas with de- Fig. 35b. Structure of shock wave of great
layed excitation (see Fig. 34). T is amplitude (AC) in a gas with delayed excitation
excitation time. (see Fig. 34).

curve (sign co = oo). The excitation behind the discontinuity is accompanied by a smooth 

(in length of the order D r) increase in pressure and compression up to point C. Figures 

35a and 35b show the distribution of pressure in the shock wave front which may be expected 

in these twc cases. The distributions of temperature, density and velocity, not shown here, 

are quite similar. The photographic study of the form of a shock wave must, we feel, 

become an expedient direct method of investigating delayed excitation of internal degree of 

freedom.

The increase in the front width becomes a natural phenomenon if we remind ourselves 

of the fact that delayed excitation yields a large second viscosity factor (Chapter 1). However, 

substitution of actual concepts by the formal introduction of the second viscosity factor is 

possible only in a limited extent and, in particular, does not permit the finding of the more 

complex mode in Fig. 35b (see Chapter 2, Detailed compute*lor.a can be found

in a paper by this author to be published in Zhum. eksper. teor. fiziki (Journal of 

Experimental and Theoretical Physics).
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Chapter 14 

Formation of Shock Waves

We discussed the theory of shock waves proceeding from the motion resulting from 

the compression of a gas by a piston that at a specific Instant (t = 0) begins to move to a 

constant velocity. We arrived at a mode at which the shock wave is formed as soon as the 

piston begins to move, and propagates with constant intensity. With a finite piston mass, 

such a motion would require that an inertia of infinite magnitude be overcome at the initial 

instant with an instantaneous change in piston velocity.

Let us study the motion of a gas caused by the gradual accleration of a piston compressing 

the gas, which is at rest when motion begins. We can easily plot this motion by substituting 

continuous acceleration by a large number of minimal velocity jumps, i. e . , by substituting 

the smooth curve in the x -  t  plane by a broken line consisting of chords of that curve.

We thoroughly investigate the first stages of this motion. The piston begins to move, 

and it moves during a time t^ at a small constant velocity w^.

During that time a shock wave of oonstant intensity propagates in the gas. The velocity 

of the substance affected by the shock wave is constant and equals the velocity of the piston 

Wj. In other words, the piston is at rest with respect to the gas immediately adhering to 

it. The same is repeated until the next velocity jump to wg takes place, and a second shock 

wave, characterized by the velocity jump w9 -  Wj travels in the gas adjoining the piston 

and compressed by the first shock wave, etc.

Figure 36 shows velocity distribution in space after three such jumps. The distribution 

curves for pressure and density at the same instant have an analogous shape.

A fundamental significance is acquired now by the properties of shock waves, shown 

in their general outlines by Jouguet ((58, 60], see also Duhem [48]). The propagation 

velocity of wave 1 with respect to the gas compressed in it in segment 2-1 is smaller than 

sound velocity at state I.
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Conversely, the velocity of wave 2 with re

spect to state I, which for this wave is the initial 

velocity, must be greater than sonic velocity at 

state I and, according to Jouguet, all the more

exceeds the velocity of wave 1.

Hence we see that the waves catch one 

another, tend to accumulate and combine into 

a powerful shock wave. Hugc\iot attributes to 

this phenomenon the stability of shock waves [56]. Hadamard [54] and Becker [38] compute the 

moment and place at which accumulation begins as a function of the acceleration of the piston.

In the x, t  plane, accumulation corresponds to the intersection of characteristics 

(lines representing the motion of individual shock waves) ahead of the piston.

Tn the case of exhaustion (piston movement away from the gas) the characteristics 

spread in a fan-like fashion without intersecting, and the solution found (see Chapter 6) 

remains correct for an unlimited amount of time. By decreasing the individual velocity 

jumps and by increasing their number we come to a continuous, smooth curve of piston 

motion and to a continuous distribution of dei •dty, pressure, and velocity in the gas ahead 

of the piston, instead of steps.

In the case of compression, however, such a solution will be correct only until the 

characteristics intersect, i. e . , until such time when one wave catches the preceding one.

As the magnitude of the velocity jump wr -  w  ̂decreases and the time interval be

tween two consecutive velocity jumps also decreases proportionally, the time and the place 

at which two waves join (the intersection point in the x -  t plane) approach a fully determined 

limit. Let us find that limit. The propagation velocity of a very weak waveB does not differ 

from sound velocity. In a gas in motion, to sound velocity there is added the motion of the 

gas proper which is equal to the speed of the piston, so that the propagation velocity of a weak 

wave in space is equal to c + w. During a time At the wave covers a distance (c+w) At.

Fig. 36. Propagation of a series of 
subsequent momenta. In time, point 
3 catches point 2, and both points 
catch point 1. The ordinate shows gas 

velocity.

120



If during that time the speed of the piston has changed by Aw, and the compression 

caused by the change in piston speed changed sound velocity by Ac, the propagation velocity 

has increased by Aw + Ac. This is the velocity at which one wave catches the other (the 

difference between their velocities), so that the waves will meet after a time

By using the laws of change of state in weak waves applied to acoustics (we could 

obtain them also by an ultimate transition from the shock wave equations), we can readily 

compute the latter quantity

e - + - t o   c-*-w
Ac-*-Aw At m -

Aw

After transition to limit we obtain

jh  _ _ 1 _____ 1
Aw dw. dt i[

where g is the acceleration of the piston.

Ac d c __ dc do
Aw dw do dw

In acoustics we found that

C=Y '% '

Since gas velocity u is equal to piston velocity w, we obtain
J n   0 t dc di> 0 dĉ  _  d l.i c _
d w = ~ c '  ~d(J dv> ~c do d  In o

(XIV-1)

(XIV-2)

(XIV-3)

(XIV-4)

For an ideal gas we readily find
4-1

. /T? 1 c / l n e  k — 1c - V r - e  ; ^ = ~ »

. e i i< 1 1 2 , x
' = - - C T T = T r r i ( c '-"')-

(XIV-5)

(xrv-6)

In the case of s a r b i t r a r y  equation of state we transform the denominator in Eq.

(XIV-1) in the following fashion



We switch to a more convenient variable, the specific volume f——; •^■=5*^- > and find

<fc 1 ti* (XIV-8)

and within the limit when w -• 0

/ =  V* fXfV-9)

Thus, the possibility of one wave to catch the preceding one, and the possibility of 

a shock wave being formed are connected with the sign of (>> the role of which in

thermodynamic theory has already been noted in Chapter 11.

A comprehensive study cf all the aspects of motion in the case of arbitrarily 

assigned piston motion runs into great difficulties [54, 38]. There arise shock waves 

of a finite but variable amplitude, and after their passage the entropy of the gas changes. 

Chfy very recently Kibel, Frankl and Khristianovich succeeded in developing effective 

graphical computation methods which, however, are much too complicated for our course 

(see [11]). Analytical methods have hitherto been found only for the motion prior to the 

formation of a discontinuity [37].

It is obviously much easier to find such a motion of the piston whereby all the 

characteristics ntersect at one point, i. e . , all the waves catch one another simul

taneously and at one single spot.

Let us assign the place and time of the formation rf a shock wave (the conjunction 

of all the weak waves), which are Interconnected fay the condition x^ = c ^ ,  found from 

the study of the first weak wave that propagates in an unperturbed and still motionless 

gas. We transpose the origin of the coordinates in the x, t  plane to that point (and we 

get new coordinates x‘, t') and find that the state of the gas is constant along the

straight lines (characteristics) which go through the origin ot the new system of coordi-
35nates. In other words, the state of the gas depends only on the ratio x '/ t '.  In 

particular, gas velocity and piston velocity equal to it also depend only on x '/ t '.

Thus, the differential equation of piston motion is homogeneous
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(XIV-10)

and can be readily integrated (see Smirnov, Course of Higher Mathematics. Vol. 2, 

p. 80).

The form of function f can be found by noting that the alope of the characteristic

is
y

7 * ~ L"  i-c- (XIV-11)

The relation between u and c in the case of the change of the gas caused by waves

propagating in one direction (see Chapter 6) in the absense erf shock waves (with constant

entropy) ?an occasionally be found in its explicit form [ ideal gas h~ -v_  x ; This« *
relation can always be found for a given adiabatic equation p = p (pS = const) in a parametric 

form [u = u (p), c = c (p)J, see Eqs. (VI-10).

We transform it to

u '~ f \  0. (XIV-12)

where f is precisefy the function f of Eq. (XIV-10).

Thus, for an ideal gas in the case that k = c /c ^  = 1.4 there takes place 
2 ,  x c  /  x P  5u : £7_ j (c — c0) =  5 (c — c0) ~  (c • i - u — e,

*> '_JL/f-L )
4 < ~  6  C(7*

We introduce the dimensionless parameter y
xJ , m Jr’ inx%'" .c bfy ;

According to Eq. (XIV-14), we get

c° r  i f  c*y ;T  0/co— cal

The variables split up as follows
j  4>/   1 5
* 4 f ~  6 ^ '  6*

The initial conditions are

(j,== x'fb~ —xt =-—c0ft ~ c0 f0'; y0~ \  .

The solution has the following form

(XIV-13)

(XIV-14)

(XIV-15)

(XT/-16)

(XIV-17)

(XTV-18)

(XIV-19)
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We revert to the system of coordinates In which at an initial instant the piston 

was at the origin of the coordinates, and obtain the following equation for piston motion 

in its parametric form

w [ l - » ( T » + T n ' (XIV-20) 

(XIV-21)

In its explicit form the equation is quite clumsy.

The curve of Eqs. (XIV-20) -  (XIV-21) is plotted precisely in Fig. 37. The piston 

velocities are marked at various points. The dashed line represents the first charac- 

tersitic.

The amplitude of the discontinuity in density, velocity and pressure at the inter

section point depends on the instant at which the motion of the piston deviates from the 
36law just established.

Fig. 37. Piston motion (solid line) 
for which all the characteristics 
intersect simultaneously at one point 
A in the upper right-hand angle of 
the drawing. Piston velocity is 

‘ marked at individual points. cQ is
sound velocity in the gas before com

pression.

A final discontinuity occurs at the intersection point the moment all the waves join. 

Cbe can readily see, however, that this discontinuity cannot propagate further as one
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whole without any change, since In a discontinuity propagating without change (a shock 

wave) there exist other relations between density, pressure and velocity. Thus, until 

the occurrence of the discontinuity the gradients evezywhere were small, the effect of 

dissipative forces could be disregarded, entropy did not change, and the relation be

tween pressure and density satisfied Poisson's adiabatic equation. In a shock wave, 

Hugoniot's equation is satisfied, and entropy increases.

The motion that arises when the discontinlty occurs will be investigated in 

Chapter 16. In the next chapter. Chapter 15, we give some experimental data on the 

occurrence of shock waves.
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Chapter 15

Shock Waves in the Case of Oscillations of Large Amplitude

Around 1800 it was noticed that strong electric sparks from a Leyden jar formed 

strange lines on a smoked plate. The electric origin of these lines was suspected.

Mach et al. [66, 67, 68, 69, 82] showed in a series of ingenious experiments that these 

lines are the trace of a collision of waves which propagate from individual sparks and 

are reflected at the borders of the plate. By placing at the plate two spark intervals of 

different lengths connected in series, Mach noted that the point where the waves meet 

is always closer to the weak spark. Thus he showed the dependence of the propagation 

velocity of strong disturbances on their amplitude. By using the shadow method for 

observing the propagation of waves, stroboscopy and instant photography with light from
v

an individual spark, Mach showed the supersonic propagation velocity and the sharpness 

of the distrubance front. He also noted that a disturbance that propagates in (three- 

dimensional) space fades out much quicker than a disturbance forced to propagate in 

one dimension only, such as in a narrow tube.

Vieille around 1900 performed experiments aimed at indicating shock waves that 

arise in a pipe when a partition dividing gaseB of different pressure was ruptured [96]. 

Vautier investigated the propagation of the momentum caused by a shot from a pistol 

[ 123]. In the first case, the relation between pressure (wave amplitude) and its propa

gation velocity that follows from Hugonlot's equations, was proved with sufficient 

accuracy. In the second case, the waves were relatively weak, and had at their origin 

a "washed-out" front without a discontinuity. However, over a stretch of several kilom

eters (Vautier used a recently built but not yet operating water supply line) one oould 

note a gradual, characteristic increase in steepness, and the formation of a discontinuity 

in the wave front.

We shall now briefly dwell upon the last tests [87, 70] which were conducted with 

particular care. Gas vibrations were studied in an inlet and exhaust pipe of an internal 

combustion engine [87] according to the following characteristics A pipe 12 m long with an
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inner diameter oi 7 cm was attached to the cylinder of a smali piston engine having the 

same diameter (? cm) and a piston travel of 6.8  cm. At five different points Inside the 

pipe devices measuring gas pressure and velocity were placed. Pressure was measured 

with a piezo-electric crystal, and velocity was measured with a 2 x 3 mm disk attached 

to the axis of the pipe.

The disk moves along the pipe axis with the motion of the gas, and turns a rod.

The rotation of the rod is recorded through a small window with the aid of a m irror 

attached to the rod. Particular attention was paid to the high proper frequency (low 

inertness) of the measuring instruments, and the satisfactory damping of proper 

vibrations.

An electric motor imparted the piston a harmonic alternating motion. The ampli

tude of the oscillations was small at frequency values far away from resonance values.

The change in pressure and velocity in each cross section of the pipe also occurred 

according to harmonic law, in complete accordance with the conventional concepts of 

acoustics.

In the case of resonance, however, the type of motion changed abruptly. Figures 

38a and 38b show schematically the recordings of the devices in the case of excitation 

of the fundamental tore of the pipe. Piston oscillation frequency is 14.4 hertz (14.4 

oscillations per second). The amplitude of gas motion is extremely wide, as should 

have been expected. At a frequency of 14.4 hertz, piston velocity does not exceed n 

14.4 h, where h is piston travel, i. e . , 3.14 x 14.4 x 6.8  cm/sec = 3.1 m/sec. In the 

case of resonance, gas velocity attains 25 m /sec, that is, about 10 times more. Of 

particular interest to us is the shape cf the curves for the change of velocity and pressure, 

which e'Tidences the occurrence of shock waves of considerable amplitude in the case of 

harmonic excitation by a comparatively slow moving piston.

The theory of shock waves permits us to reach approximate though extremely im

portant conclusions regarding the amplitude of waves with resonance under Schmidt's 

test conditions. Energy dissipation from friction and heat transfer from the gas near the
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Fig. 38a. Diagram of test (on the extreme 
left, the pipe) and record of changes In pres
sure (left) and gas velocity (right) in 7 cross 
sections of the pipe depending on time with 
oscillation excitation by piston motion with a 
fundamental proper frequency of the pipe of 

14.4 hertz.
CODS: atm; b) hertz; c) m/ sec.

lateral walls of the pipe (Kirchhoff [61]), in the case of reflection from the end of the 

pips and the piston (Konstantinov [13]) all these causes for sound absorption, common 

for acoustics, are very small under conditions of experiments of this type. The amount 

of energy dissipated during a unit of time grows proportional^ with the square of the 

amplitude (1. e . , proportionally with oscillation energy) and at great amplitudes, when 

discontinuities occur, it may even become secondary as compared with other mechanisms 

of energy dissipation.

We established in Chapter 11 that in a shock wave there occurs an increase in 

entropy proportional to the third power of the amplitude of pressure, density or velocity 

in the wave. Under steady-state conditions, this increase in entropy must be compen

sated by an automatically occurring transfer of heat from the gas into the pipe walls.
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The entropy increase describes the irreversible transformation of mechanical 

energy into thermal energy; It describes the damping of waves negligible in the case 

of small amplitudes, and the rapidly increasing (by the cube rather than by the square 

as in linear acoustics) absorption. We introduce the effective value of pressure 

amplitude Ap, denote frequency by u), the pipe length by I, piston travel by h, piston 

velocity by w, piston area equal to the pipe's cross section by F and we find, approxi

mately, the work performed by the piston during a unit of time
t

A ~ l j  FApwdl. (XV-1)
37 » ®

In the case of resonance, we approximately evaluate A, and note that w approxi

mately equals ha).

AzzAph (oF. (XV-2)

Fig. 38b. Instantaneous distributions 
of pressure and velocity lengthwise in 
tho pipe at various instants of time (pro
cessing of the recordings in Fig. 38a).
CODE: a) atm; b) m/sec.
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We find energy absorption by setting up the expression

A i— DQFTAS, (XV-3)

where DqF  is the amount of substance subjected to shock compression during a unit of 

time; D, shock wave propagation rate, is substituted approximately by sound velocity 

c; AS is increase of specific (per gram) entropy; T is absolute temperature; TAS is 

work per gram of substance irreversibly transformed into heat.

According to Eq. (XI-13),

For air k = 1.4;
/ £ * \  - j L i / i + i l - M j 1
\ 3p * / * “ "  p• k \ k P* *

4=«■ f  i  «> r« (4,) >,y= .  (XV'4)
o

We equate the work performed by the piston to energy absorption and obtain
j A p ^ _ Wi(a

In the case under study of excitation of the pipe's fundamental tone, piston oscillation 

frequency in resonance is connected with pipe length o>= c /21 (the length is of the half-wave 

equal to pipe length). By substitution we find the simple formula

T = y 5 f

In Schmidt's experiment, h= 6.8 cm and I = 12 m, we find

(XV-5)

= - ] / 5  -  -  =  0 . 1 7 ;  Ap ~  0 . 1 7 a t m  a b s .

whichisina reasonable relation with the observed order of magnitude (Figs. 36a and 38b) if 

we take into account the approximate nature of the computation and the existence of 

other types of absorption. Let us note that for overtones, alongside the change in 

the relation between o>and I , we must also consider the presence at every instant of 

several discontinuity surfaces (shock waves), which increases E^.
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cnapter 16 

Propagation of an Arbitrary Discontinuity

In Chapter 14 we have come very close to considering the problem of the subse

quent fate of a discontinuity that arises s\ &e junction spot of several weak shock waves, 

a discontinuity that is not governed by Hugoniot'a equation. We generalize that problem 

and formulate the problem of the behavior of an arbitrary discontinuity as follows.

At an initial instant of time t = 0 there is given a plane (located at the origin of 

the coordinate x = 0) in which all the quantities p, v, T, u, which characterize the 

state and the motion of the gas, are subject to a jump. Oh both sides of the discon

tinuity plane, all these quantities are constant. The greater the distance at which all of 

these quantities can still be considered constant, the longer (in terms of duration) will 

the solution to which we come be correct.

Since the conditions of the problem do not contain either a characteristic length 

or a characteristic time, analysis of Chapter 6 shows that one must seek a motion that 

depends only on the relationship x /t. In Chapter 6 this motion was found analytically 

for the propagation of an expansion wave in a gas. For a compression wave the analytic 

solution led to an absurd conclusion, namely, to the necessity of realizing at one and 

the same point in space simultaneously three different values for pressure and volume. 

Precisely this absurdity became the starting point for the development of shock wave 

theory. The knowledge of shock wa^e theory enables us to solve both particular problems 

for piston motion that begins at the time instant t  = 0, which leads either to an expansion 

wave or to a shock wave. Now we can also solve the general problem of the propagation 

of arbitrary discontinuities. We sill set up the solution from expansion waves and com

pression waves studied earlier.

Let us first note a specific difficulty. The expansion wave propagates in a gas at 

a velocity equalling that of sound, whereas the compression wave, as we have seen, 

propagates at a velocity exceeding that of sound. However, with respect to the already
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compressed gas, the compressed shock wave propagates at a velocity less than that of 

sound. Thus, we have only two waves. One wave, either the expansion or the compression 

wave, propagates in one direction, for instance, to the left of the plane in which occurred 

the discontinuity at an initial instant of time, and the other wave propagates in the opposite 

direction, namely, to the right. We cannot direct more than one wave in one direction.

In fact, if, for instance, a shock wave propagates to the right, then the expansion 

wave and, all the more, the shock wave that travels in the gas subject to compression 

in die same direction, are bound to catch up with the original shock wave. But since both 

waves must proceed from one point x = 0 simultaneously at the instant t = 0, when the 

discontinuity occurred (in other words, the entire phenomenon must depend only on the 

coordinate x /t, and in this case it is inconceivable that one wave catch up with the other), 

then there can be no more than one wave travelling in one direction. However, a wave 

that propagates in a gas the state of which is assigned (it may be either a shock wave or 

an expansion wave) can be fully determined by one parameter. Thus, for example, if 

we determine the density ratio before and after die passage of a shock wave, die density 

will determine the pressure of the shock wave (according to Hugoniot's adiabatic curve), 

the propagation speed of the shock wave, entropy and all the other quantities of the substance 

subjected to compression. And in order that it be precisely a shock wave with which we 

deal, it is necessary that the density of the substance exceed its initial density since 

we are dealing with gases far away from the critical point. Conversely, if we establish 

that the density of the substance after the passage of the wave be less than its density 

prior to the passage of the wave, then on die basis of thermodynamic considerations we 

can immediately conclude that we are dealing here not with a shock wave but with a 

constantly expanding expansion wave. For an expansion wave the change in density again 

fully determines the change in pressure in the wave, the gas entropy in die wave does 

not change, while the velocity of the wave is equal at any point to sound velocity.

Thus, at first sight it would appear that we have only two parameters by which 

can be selected the change in density in two waves that propagate in two different
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directions. We need, however, also a third parameter in order to describe the propa

gation of an arbitrary discontinuity. On one side of the discontinuity, for example, on 

the right, we were assigned three quantities, namely, pressure, density and velocity 

in an unperturbed gas. For each wave we have one parameter. There are two waves, 

which gives us two parameters. We must, however, get to the arbitrarily assigned 

three quantities which characterize the state of the gas on the left (for instance, pres

sure, density and velocity on the other side of the discontinuity). Thus we necessarily 

conclude that there must exist another discontinuity, or another wave. However, that 

discontinuity or wave must have a peculiar property, namely, the discontinuity in 

question must not propagate at sonic velocity with respect to the gas. We can imagine 

such a discontinuity only if pressure and velocity on both sides of the discontinuity are 

identical. Only in this case there will be no sound waves proceeding from the discon

tinuity towards both sides. The fact that velocity and pressure are equal, a fact which 

guarantees the mechanical equilibrium in the discontinuity of a special kind, does not 

interfere with the fact that on both sides of that discontinuity temperature, density and 

gas entropy are different. With the aid of such a third discontinuity (a discontinuity of 

a special kind) it becomes possible to satisfy all the equations, i, e . , it becomes 

possible to find a full solution to the problem of the further fate of an arbitrary discon

tinuity assigned at an initial instant of time.

Let us first of all assign specific values to the pressure and specific volume of the 

substance.

In the p, v diagram of Fig. 39, let point A represent the state of the gas left of 

the discontinuity (pressure p ), and point B be the state of the gas right of the arbitrarya

discontinuity (pressure p^) at the initial instant t  = 0. We now follow all the motions 

which result for different values of yelocity with respect to the motion of the substance 

right and left of the discontinuity plane assigned at the initial instant. Through each 

point A and B we plot upwards Hugoniot's adiabatic curve along which compression in

133



Fig. 39. Propagation of an
arbitrary discontinuity. T***»
initial states on both sides of
the discontinuity are described
by points A and B. Hugoniot's
adiabatic curves H. and A
are plotted above A and B, 
Poisson's adiabatic curves P^

and Pg are plotted below.

the shock wave proceeds, and downward we plot Poisson's adiabatic curve along which die 

state of the substance changes with expansion in the expansion wave.

With a change in relative velocity, there is s change in pressure p in waves pro

pagating in the first and the second gas, the pressure being equal on both sides of the 

discontinuity of a special kind. However, instead of assigning a relative velocity and 

finding pressure p, it is more expedient to proceed in a different way, and, establishing 

various values of p, plot a corresponding regime and determine which should be the relative 

motion of the gases at the initial instant in the states represented by points A and B in 

order that th,. assigned pressure p can be attained.

We select pressure pQ which exceeds both pressure p& and (Fig. 40a). In this 

case expansion waves will travel right and left of the arbitrary discontinuity. The 

substances in states a^ and bQ border on one another. They are divided by the dis

continuity of a special kind in which pressure on both sides is equal to pQ and the 

velocities of the substance must be equal to one another. But since the substance in
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Fig. 40. Characteristic cases of the propagation of an arbi
trary discontinuity with assigned pressure and density on 
both sides of the discontinuity, but different relative veloci
ties ties.
a—collision of two gas masses; there arise two shock waves; 
b—gas masses moving at different velocities; in the high- 
pressure gas there arises an expansion wave which pushes the 
shock wave in the low-pressure gas; c— scattering of two gas 
masses; there occur two expansion waves; d— scattering of 
two gas masses at a velocity exceeding the sum of outflow 
velocities; there occur two expansion waves, with vacuum in

in the center.
The arrows showing gas velocities are given in the system of 
coordinates in which rest the gases occurring in the waves in 
the center of the diagrams (a , b , a b a b ).

state ay moves to the left with respect to the initial substance A, and substance bQ, as 

in the shock wave, moves to the right of its initial substance B, i . e . , in the direction 

of the propagation of the shock wave Bb^, then, in order that the velocities in states 

a^ and b^ be a^ual to one another, it is necessary that at the initial state, at the instant 

t = 0, substances A and B move toward each other cclL-rng at high speed. We will 

obtain shock waves propagating on both sides of the discontinuity in the case of a 

collision of twro masses of substance moving towards one another at high speed. The 

smaller the velocity at which substances A and B collide, the smaller must be pressure 

Pq in the shock waves. Finally, at a sufficiently small collision velocity we go over to

another regime (Fig. 40b). In this regime, pressure p is greater than p but smaller1 <1
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than pressure p^. Along substance A a shock wave moves and along substance B an 

expansion wave moves. Such a regime can be realized, in particular, also if at the 

initial instant t  = 0 the velocities of substance A and substance E are equal to one 

another, so that at the initial instant we have only a pressure discontinuity. It is 

obvious that in this case, between substances A andB, there arises an area with a pressure 

intermediate between pa and p^. In this case the substance moves from the higher pres

sure B toward the lower pressure A. The shock wave travels in the substance in which 

pressure is lower. Conversely, the expansion wave travels in the substance in which 

the pressure is higher. This case is examined in detail below.

Let us now return to Fig. 39 and continue the analysis of the various cases that

may occur. Selecting p2 smaller than p& and p^, wc obtain expansion waves which

travel on both sides of the initial discontinuity (Fig. 40c). Such a regime will be

realized if at the initial instant the substance in state A and the substance in state B move

in different directions from the discontinuity at a sufficient speed. Finally, If

and when the relative velocity at which the substance in state A and the substance in
0 0 33state B move away from each other at the initial instant exceeds 5(cA + cB), where 

c°A and c j  denote sound velocity in state A and in state B, i. e . , if the relative velocity 

of substance A and substance B exceeds the sum of maximum outflow velocities of sub

stance A and substance B, then between substance A and substance B a vacuum will be 

formed (Fig. 40d).

In a paper by Shchelkin and this author [9], and in an earlier paper by Shardin [84], 

detailed numerical computations are given that refer to the case of initial pressure dis

continuity without velocity discontinuity (the case in Fig. 40b). It is interesting that if 

the compressed substance' is hydrogen, in which sound velocity is greater than 

in the second substance of low pressure (e. g ., air), the shock wave is considerably 

more powerful than if the compressed substance also were air. Let us take a numerical 

example from [9]. Figures 42a and b show the distribution of pressure and temperature
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Fig. 41a. Propagation of a dis
continuity that arises when air 
at rest compressed to 100 atmo
spheres absolute and a ir at rest at 
1 atmosphere absolute touch one 
another. At the initial instant 
temperature everywhere is 20°C. 
The diagram shows the pressure 

* curves (above) and temperature
curves (below).

in the case of a sudden rupture of the screen that divides the gas compressed to 100 

atmospheres and the gas under atmospheric pressure. The compressed gas in both 

cases is placed on the left. The abscisas shows die relation between the coordinate 

and time x/cQt, where Cq is sound velocity in the air at initial temperature independent 

of pressure. Hie screen was placed at x = 0.

In Fig. 41a (where a ir is on both sides) we see that on the left at a distance greater 

than unity the compressed-air is still unperturbed. Between x /t = -Cq and x /t = C.9 cQ 

there is an expansion wave which at its last points borders on a ir expanding to a pres

sure of about six atmospheres. The discontinuity of a special kind is at rest with respect 

to the a ir on both sides of the discontinuity, but in our system of coordinates it moves 

together with the air surrounding it at a velocity 1.7 times that of sound in the initial
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Fig. 41b. Compression of air by hydrogen with 
an initial pressure of 100 atmospheres absolute.

CODE: a) Hydrogen; b) Air. 

stage (i. e . , at about 580 m/sec). To the right of the discontinuity of a special kind
i

there is a ir under shock compression from atmospheric pressure up to a pressure of 

about 6 atmospheres. In the expansion wave the a ir temperature drops from 20°C (at 

100 atmospheres) to -140°C (at 6 atmospheres) in accordance with Poisson's adiabatic 

equation. To the right of the shock wave, gas compression from 1 to 6 atmospheres is 

accompanied by a temperature increase from 20°C to 300eC, which appreciably exceeds 

the temperature increase according to Poisson's adiabatic equation (220°C). The com

pression shock wave from 1 to 6 atmospheres propagates at a velocity equal to 2.3 

times Hie speed of sound. Only for x greater than 2.3 c^t, on the right there is unper

turbed a ir  at atmospheric pressure.

Figure 41b shows a sim ilar case where tne compressed gas is hydrogen. 

Because of higher sound velocity, hydrogen is capable of giving a considerably higher 

outflow velocity for a  given pressure differential. Hence hydrogen compresses a ir 

considerably more, although hydrogen itself expands much less. Pressure in the
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expansion wave in hydrogen and in the shock wave propagating in the air amounts to

about 25 atmospheres. Accordingly, the shock wave reaches considerably higher
39velocities, approximately 4.6  cQ. The temperature in the shock wave is extremely 

high, 1175°C. One may assume that such a high temperature during the outflow of hydrogen 

into a ir may, under certain conditions, lead to the ignition of hydrogen. If the outflow of 

hydrogen into a ir occurs in a closed container, the subsequent repeated reflection of 

shock waves may lead to a further increase in temperature.

Which of the cases shown in Figs. 40a, b, c, and d will occur if the discontinuity 

at the initial instant is formed by the application of a large number of small compression 

shock waves which simultaneously join at one and the same instant in a point in space? 

Physically this case can be achieved by pushing into a gas a piston at a variable velocity.

In Chapter 13 we found such a curve for the piston motion at which all the waves joined 

simultaneously. At that instant, on the right of the spot where the waves joined, we have 

unperturbed gae. On the left we have a gas subjected to repeated compression by weak 

shock waves.

We have noted several times, however, that the subsequent compression by two 

shock waves is not equivalent to a one-time shock compression. In particular, entropy
3

increase in each wave., if the waves are sufficiently small, is proprotional to (Ap) . By 

choosing a sufficiently large number of sufficiently weak shock waves we can achieve 

compression to any assigned pressure with any small entropy increase, since if we 

subdivide the entire assigned pressure change between n waves, then pressure increase

in each wave is proportional to l/n , entropy increase in each wave is proportional to
3 2l/n  , and total entropy increase in n waves is proportional to l/n . Thus, in the case

of an accumulation of a large number of weak compression waves we will have a nearly

adiabatic change of state.

At file instant of accumulation of individual waves as shown in Fig. 36 (Chapter 13),

on the right of the accumulation spot we have an unperturbed gas in the initial state A,

and on the left we have a gas in state B which was virtually subjected to adiabatic
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40compression. It is obvious that point B does not lie on Hugonlot's adiabatic curve H^. 

Accordingly, the discontinuity cannot propagate further as one whole. We must apply 

to its propagation the general theory of propagation of arbitrary discontinuities. It can 

be shown that the velocity acquired by a gas during consecutive compression by a 

large number of shock waves is smaller than the velocity which the gas would acquire 

were it compressed to the same pressure by one shock wave. Hence it follows that 

during propagation of a discontinuity that occurred from the accumulation of many 

weak shock waves, we will have the case in Fig. 40b. Pressure will be lower than 

the pressure produced by the piston (pressure p0 ). An e:?ansion wave will travel in 

the compressed gas in the direction toward the piston, and to the right into the unper

turbed gas will travel the compression shock wave created by the discontinuity. Figure 

41c shows the distribution of pressure and temperature obtained after a time t  following 

the conjunction of waves formed by the compression of air by a piston the velocity of 

which gradually reached 4.44 = 1500 m /sec, so that pressure at the piston p^

attained 50 p^, i. e . , 50 atmospheres absolute. Pressure in the compression shock 

wave will be less than pressure Pg reached earlier at the piston. However, because of 

entropy increase, this lower pressure corresponds to a higher temperature. Tempera

ture discontinuity in a relatively unperturbed gas is shown in the diagram only for this 

case (dashed line. Fig. 41c). Let us note that in this figure the coordinate and time are 

calculated repsectively from the place and the instant of accumulation, i. e . , from the 

occurrence of the discontinuity. In the system of coordinates in which A is motionless, 

the expansion wave moves to the right; however, it moves to the left with respect to the 

gas in state B which moves at a great speed, and with respect to the piston, not shown 

in Fig. 41c.

The case examined above is of considerable interest for the theory of detonations, 

because the result obtained explains how a flame acting on a gas like a piston can, by 

gradual compression, produce a shock wave at a great distance from the piston (or the 

flame). By graudally compressing the gas to a comparatively low temperature (630°C,
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Fig. 41c), we can achieve an abrupt increase in temperature (1450°C, Fig. 41c) at a 

considerable distance at the instant of accumulation, or achieve a "remote ignition" 

of the gas. Apparently the mechanism of the occurrence of a detonation in gases must 

be imagined precisely in this way in a number of cases.
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Fig. 41c. Propagation of a discontinuity that 
occurred after the collision of compression 
waves in Fig. 36. The pressure in the arising 
shock wave is lower (the expansion wave moves 
toward the compression waves), but the tem
perature in the shock wave is considerably 
higher than the maximum temperature reached 
by the accumulation of small compression waves.
The solid line is the distribution of pressure, the 
dashed line represents the distribution of temperature.
CODE: a) p/atm abs.

Having determined the character of the motions obtained during the propagation 

of an arbitrary discontinuity, we can verify the initial assumption according to which 

motion depends only on the relation x /t.

In Chapter 6, in Hie case of an expansion wave, this solution depended on the 

absence of dimensional values of time or length in the initial and boundary conditions 

of the problem, and also on the fact that dissipative forces were ignored. The latter 

is necessary, since in the'combination with sound velocity, from vi3cosity or thermal

conduction we can plot the characteristic length and the characteristic time, for
JL Xexample oc, and —— • In an expansion wave, dissipative forces were neglected be- 

cause die equations of gas dynamics led us to a "wahsed-out" wave of great width
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(increasing linearly with time), with exceedingly small values of the velocity gradient 

and the temperature gradient

Is it possible to neglect dissipative forces in the case of a shock wave in which a 

considerable entropy increase occurs? A positive answer to that question is associated 

with the fact that the numerical value of entropy increases in a shock wave (due, in the 

last analysis, to the effect of viscosity and thermal conductivity) is fully determined 

by the conservation equations and does not depend on the magnitude of thermal con

ductivity and viscosity. The latter determine only the final width of the shock wave 

front. But the dimensional value for length (the width of the shock wave front) thus obtained 

is extremely small, ft is of the order of the length of the path of a molecule in the case 

of a strong shock wave.

Also small is the width of the discontinuity of a special kind. The equilization of 

temperature on both sides of this discontinuity, and the mutual penetration of gases by 

diffusion lead, after a time t, to a width of the order of 9 =  ̂  — where v. is 

thermal diffusivity; B is the diffusion coefficient. We use the molecular-kinetic 

expressions v. and B, and find I ~  where I is the molecule path length, and c is 

sound velocity. But the distance x covered by shock waves or expansion waves during 

a time t, is of the order of ct, so that £ — 'fix.

Thus, the relationship of the dimensions of the area in which dissipative forces 

are substantial to die dimension of die entire area covered by motion, is equal to I /x 

for a shock wave, and j / y  for the discontinuity of a special kind. Both quantities are 

extremely small in any large-size motion in which x is absolutely greater than I .

Very interesting is die history of the investigation of the propagation of an arbi

trary  discontinuity, which reflects the different viewpoints of the investigators of 

various countries characteristic of the study of the theory of shock waves. The above 

theory had been expounded by Hugoniot as he was formulating the theory of shock 

waves [56]. Hugoniot's theory of the propagation of an arbitrary discontinuity was well
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known to other French authors. It is mentioned by Crus sard [45], and it is also found 

in Hadamard's book [54] on the propagation of waves. As a matter of fact, Hadamard's 

exposition is somewhat distorted by the absence of a clear explanation as to when one 

should use Hugoniot's adiabatic curve, and when one should resort to Poisson's adiabatic 

curve (entropy increase in compression shock waves, and the impossibility from a 

thermodynamical viewpoint of the existence of expansion shock waves were proved later 

by Jouguet and Zemplen), and also by his attempt to arrive at closed formulas. However, 

the theory of propagation of an arbitrary discontinuity appears to be unknown to German 

authors. Thus, Weber [97] discusses only the case of a collision of two shock waves of 

equal amplitude, i . e . , precisely the case when both initial states A and B of our drawing 

Identically coincide and, consequently, all the Hugoniot adiabatic curves plotted from 

them also coincide. In this particular case, as can be seen from the symmetry, the 

discontinuity of a special kind becomes zero. Chi both sides of it not only pressure and 

velocity are identical, but also temperature, entropy and density are equal to one 

another. In the 1925 edition o ' his book, Weber writes that " . . .  it is not yet known what 

will happen in the general case of a collision of two arbitrary shock waves."

The problem of the accumulation of shock waves was formulated by Becker in his 

well-known book "On the theory of detonation and shock waves" [38]. In 1920 he correctly 

predicted the fundamental qualitative result of the accumulation of shock waves, namely, 

the temperature increase at the instant they coincide. Then he writes: "No one knows 

yet what will happen when the steepness of the rise will become infinite after a certain 

tim e." The solution of this problem is given above. It must be mentioned that in his 

paper Becker mentions Hugoniot’s memoir as well as Hadamard's book. A precise and very 

general investigation into all the cases of the propagation of an arbitrary discontinuity 

that may be encountered, is given by Kotchine [64].
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Chapter 17 

Supersonic Flow Around a Body

Above, in Chapter 4, we clarified some properties of a flow around a body at super

sonic speeds, inherent in flows at a great distance from a body. First of all we established 

a fact, according to which the turbulence caused by the presence of a body in a supars-Taic 

flow, invol. es not the entire flow but only a cone with an axis parallel to the direction of 

die flow, and the angle of aperture the sine of which is equal to the ratio of sound velocity 

to flow velocity (this is known as the Mach angle). However, these statements referred 

only to flows at a great distance from the body, hi particular, only at a great distance 

from a body, where we can regard turbulence to be small, we may state that the turbulence 

propagation rate will be equal to sound velocity. Close to the body itself, where the 

turbulence caused by the presence of the body can no longer be regarded as small, this 

turbulence can steadily spread with respect to the flow in the form of a shock wave at a 

velocity in excess of that of sound, in an unperturbed gas. The knowledge of sho^k wave 

theory makes it possible for us to establish certain properties of flow around a body by 

a supersonic flow, which refer to the immediate neighborhood of the body flowed around 

and, which, consequently have a certain importance for the problem of Hie resistance 

of a body moving at supersonic speed, which is a problem of paramount importance in 

modern ballistics.

In the following we will study separately two cases. The first case is the flow 

around a body with a blunt profile. We can readily imagine the general character of the 

flow (Fig. 42).

As we have clready mentioned, at a great distance from the body, perturbation (or 

turbulence) is small. The s'olid line shows the position of the stationary shock wave, the 

dashed lines represent the flow lines. At a great distance from the body, where the 

shock wave amplitude is small, its velocity does not differ from sound velocity, and the 

dip angle of the solid line is equal to the Mach angle. There is no doubt, however, that 

at some point (and this point can readily be found for any symmetrical profile), the shock
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Fig. 42. Diagram of super
sonic flow around a body with 

a blunt profile.

wave surface must run normal to the direction of flow (Fig. 42, point a^). At that 

point, gas velocity with respect to the shock wave is maximum, the amplitude of pres

sure change in the shock wave is greatest and can be readily computed if we know the 

flow velocity (or, conversely, the velocity of our projectile, or any other body under in

vestigation with respect to the motionless gas). In the case of compression in the shock 

wave, gas velocity changes from supersonic to subsonic. Thus, in the immediate vi

cinity of the body, near its blunt front part, we deal with a subsonic flow. Any further 

slowing-down of the gas on the segment from the shock wave to the body surface, a^-ag 

(Fig. 42), takes place adiabatically, and pressure increase can be computed with the 

aid of Bernoulli's theorem.

Rayleigh [79] pointed out a very substantial fact, according to which such a con

secutive compression first of the shock wave and then the adiabatic compression in the 

resulting subsonic flow leads, in the case of high velocities, to a considerably lower 

pressure than a purely adiabatic (isentropic) compression from supersonic velocity to 

a state of rest achieved at the point where the flow lines branch off in the front part of 

the blunt profile being flowed around. The fact that pressure in the case of total slow

down will be lower in the presence of a shock wave can be readily proved thermodynami

cally. Both in the presence and in the absence of a shock wave, along a flow line, the 

law of energy conservation holds, i. e . , Bernoulli's theorem holds in its integral form
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I + u^/2 = const, which fully determines the enthalpy of the gas at the point where it 

will be "stopped dead", known as enthaply at rest IQ = I + u /2 . If compression occurs 

adiabatically, then condition S = const is added. The value of enthalpy I and entropy S 

fully determine the state of the substance. If a shock wave occurs, then entropy is no 

longer conserved.

Computation of the exact value of pressure and the computation of the state of the

substance ensuing from deceleration in the case where this occurs partially in the

shock wave, is far more complex. We can state, however, that entropy in the shock

wave increases, and that an entropy increase for a given enthalpy always means a 
41drop in pressure. Thus, the presence of a shock wave ahead of the body moving at 

a supersonic velocity leads to a decrease in pressure in the front part of the body's 

blunt profile, leads to a decrease in the resistance to the body’s motion, and thus re

moves (as shown by Rayleigh) the considerable disagreement between experimental data 

on the resistance of projectiles and the magnitude of resistance as computed by formulas 

based on adiabatic (isentropic) compression. This is of considerable importance also 

when measuring supersonic velocities by means of a Pitot tube. In this case it is also 

necessary to take into account the occurrence of a shock wave in front of the outlet of 

the tube.

Let us imagine a reservoir filled with a compressed gas that flows out with super

sonic velocity, and a body placed into the supersonic flow (Fig. 43). In the reservior 

the gas is at rest, in the nozzle it gains momentum and, approaching point a2 on the 

surface of the body flowed around, it is again slowed down. The comparison between the 

state of the gas in the reservior and at point ag is quite instructive. If the change in 

the state of the gas during deceleration follows the same law as in the case of acceleration, 

then at point a~ the gas should return to the same state in which it was in the reservior, 

and gas pressure and temperature at point a2 should not differ from pressure and 

temperature in die reservoir. This is so in the case of subsonic flow, but in the case 

of supersonic flow, acceleration and expansion in the nozzle occur isentropically,
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whereas deceleration and compression of the gas in the shock wave are accompanied by an 

increase in entropy. We apply the law of energy conservation to the motion of an

element of the gas volume and obtain Eq. (HI-5), Chapter 3,

(m-5)
This equation holds true, and the value of the constant is maintained, also in the

> B*=  consL

case of shock compression of the gas, i . e . , when the flow line intersects the shock
42wave surface during steady motion. In the reservoir and a point a2, velocity u -  0, 

hence Eq. (m-5) leads to the conclusion that enthalpy in the gas at the branching point 

and in the reservoir is the same. Enthalpy in gases depends only on temperature.

Hence, in the experiment shown in Fig. 43, the gas in the reservoir cools off during 

outflow and is heated again during deceleration to reach the same temperature it had in the 

reservoir (a3 this has been the case in a subsonic flow). However, the irreversible 

increase in entropy at the deceleration stage leads to the fact that density and pressure in 

the gas at point are lower than in the reservoir, and, unlike in subsonic flows, pres

sure is not fully restored. This fact is of 

considerable importance for the resistance of air 

to the motion of bodies flying at supersonic 

speeds, and it has been thoroughly investigated 

Flg* 43- by Rayleigh (Table 4).

Table 4

m, x/cei; a)

1 
1 

•8 €50 990 1320

u/ea i 2 3 4
P(aj), o-.c b) 1.65 5.75 1232 21.6
T(oA °C 85 250 550 950

P(S= cons'.) 1.89 7.f,i 36.6 150.2
/>(»!> 1.09 4.5 10.3 1S.5

CODE: a) m/sec; b) atm abs.

147



The first line of file table gives the velocity of the body (for motion in the air), the 

second line gives the ratio of body velocity to sound velocity, the third line gives file 

pressure developed during motion at point a.̂ , the fourth line gives gas temperature at 

that point (pQ = 1 atmosphere absolute, TQ = 20*), the fifth line gives the pressure that 

could be developed in the case of isentroplc deceleration of the gas or, in other words, the 

pressure that should have been developed in the reservoir <n order to achieve the assigned 

outflow velocity of the gas. Finally, the last line In the table gives the pressure at point

of Fig. 42, after compression in the shock wave, but prior to deceleration in the subsonic flow.

It is interesting to note that if a body with a blunt profile is flowed around by a gas 

at subsonic velocity, near the body's surface there may occur an area of supersonic 

velocity. Thus, if a round cylinder is in a cross flow, supersonic velocity on the side is 

obtained beginning from the Bars tow number Ba-0.45 (Taylor [25]).

In the case of supersonic flow around a body with a sharp extremity, the subsonic 

gas jets forming after compression m the shock wave will easily flow around the sharp 

edge, and the stationary shock wave will be closer to the sharp edge than in the case of 

flow around a blunt profile. In the case of a sufficiently small angle of aperture of the 

sharp edge we may expect file occurrence of file phenomenon shown in Fig. 44a, in which 

the shock wave touches the sharp edge. If ibis is the case, then by changing the scale (for 

example, if we switch to a projectile, the linear dimensions of which are greater by a 

specific factor than the bullet shown in Fig. 44a) we hardly change, if at all, the condi

tions at the very vertex. If we take the boundary case of an infinitely large body, we see 

that to find the motion near its vertex we have not, in this case, either a characteristic 

length o r a  characteristic time, and the entire mction may depend only upon the angle 

between the radius vector plotted at a given point from the vertex of the cone and the axis 

of file cone. We seek a solution in which all the quantities depend on this angle alone, 

i. e . , are constant along each cone surface having a common axis and a common vertex, 

file cone being flowed around belonging to this very family of cones.
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The stationary shock wave near the vertex also acquires the form of one of these 

cones the vertex of which coincides with the vertex of the body, and the angle of aperture 

depends on the angle of aperture of the conical vertex of the body. In which case can this 

result, which refers initially to the neighborhood of the edge of an infinitely large cone, be 

applied to a real projectile in which the conical head is connected (in the simplified case 

shown in Fig. 44a) with the cylindrical portion and the bottom of the projectile?

If the cone flowed around is sufficiently tapered and the flow moves at a sufficiently 

high velocity, one may expect that also after compression in the shock wave the gas velocity 

with respect to the surface of the cone will exceed sonic velocity. In this case, if gas 

velocity in the region GFABCD (Fig. 44a) exceeds sonic velocity, the change in the nature 

of the motion that occurs at points D, C and further (due to the fact that; at these points the 

surface of the projectile noticeably differs from the continuation of the conical surface AB) 

will not affect the motion near AB, and will not move against the direction of flow. Thus, 

one can apply the partial solution for an infinitely large cone that depends only on one angle 

and is not too difficult to be computed, to plotting the motion on the entire conical section 

near the vertex of the projectile, on condition that this vertex be sufficiently tapered so 

that velocity after compression in the shock wave still exceeds sonic velocity.

On the shock wave surface we have a refraction of the flow lines. In the case of 

a so-called strong discontinuity, i. e . , in a shock wave, only the normal velocity com

ponent undergoes a sudden change, while the velocity components tangential to the shock 

wave surface remain unchanged. From this follows the refraction of the flow line in the 

shock wave shown in Figs. 44a, b. The essential angle of the cone formed by the shock 

wave surface is calculated from the condition according to which after refraction in the 

shock wave and the subsequent bending, according to the equations of motion, the flow 

lines near the surface of the projectile must be parallel to the generatrices of the cone 

flowed around.

We shall not dwell on the details of the design, and we refer to motion and to the 

design diagram not so much because of the numerical results, which arc far from the
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Fig. 44a.

CODE: a) Shock wave; b) expansion wave; c) plate; 
d) expansion wave; 3) shock wave; f) flow line; g) 

sliding surface.
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area of application interesting us, but rather as an example of tnOue mathematical 

simplifications which are specific precisely for supersonic flow and are closely related 

with the application of similarity theory [42]. At the present time Frankl' has developed 

methods for computing the distribution of pressure on the surface of pointed bodies of 

revolution also in those cases where they differ from a cone (26, 27].

Another, even simpler case is that of the supersonic flow about a thin plate 

slightly inclined in the direction of the flow (Fig. 44b).

At the front edge two waves are formed, a shock wave below the plate, in which 

the flow lines are suddenly refracted and following the wave move parallel to the plate, 

and an expansion wave above the plate, in which there gradually occurs the same bending 

of the flow lines.

Near the front edge the state also depends only on the ratio y/x (if the origin of the 

coordinates is placed at that point), as in the problem on the motion of a piston 

at a constant velocity the motion only depended on x/t.

The phenomena at the rea r edge are similar to the propagation of an arbitrary 

discontinuity, since at that point two flows join, the pressures of which are different.

Behind the rear edge there arise a shock wave, an expansion wave and a discontinuity 

of special kind (dashed line) on which now there occurs the discontinuity also of the 

tangential velocity component (eddy surface) . However, with sufficient flow velocity 

and a slight inclination of the plate the flow along the plate continues to move at super

sonic velocity, and the phenomena at the rear edge have not an adverse effect on the pro

perties of the flow near the surface of the plate. Pressure on the upper surface of the 

plate is less, while pressure on the bottom surface is greater than pressure in an unper

turbed flow. This results- in the appearance of a force that acts in a normal direction to the 

the plate surface in the direction upward and b?ck. To calculate drag and lift it 

suffices to calculate the waves which touch the front edge.

It is characteristic that in gas dynamics of supersonic flow d'Alambert's paradox 

(the absence of resistance in a nonturbulent flow around a body by an ideal fluid) does not
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take place. There arises what we term as wave resistance, associated with the presence 

of steady waves which carry away the work performed by a moving body against resistance 

forces.

At the same time, at high velocities the irreversible heating of the substance sub

jected to shock compression becomes quite significant, and it remains in the form of a 

"trace" after the passage of the body.

The flow around a wing is thus designed from the solution of the problem of the flow 

around an angle formed by the wing and the ilow line hitting the front edge. The flow around 

an angle was studied by Prandtl [77] and Meyer [71], Graphic methods for the solution of 

equations that determine the parameters of oblique shock waves can be found in the 

general manuals [27, 23, 35, 39).

By compressing a gas that flows around a body which moves at supersonic velocity 

one can achieve a rapid heating of the gas to extremely high temperatures. Leypunskiy and 

this author tested an aluminum bullet flying at a velocity of 3,300 m/sec which crossed an 

area of mercury vapor where it provoked an increase in temperature up to several tens of 

thousands of degrees (computation, assuming constant thermal capacity, yields 45,000 

degrees). An extremely strong thermal luminescence of mercury vapor on the bullet's 

path was also observed [125].

By shooting bullets through gases and gas mixtures subject to chemical reactions we

can study the velocity of reaction at a temperature up to 4 ,000s and a reaction time of 
-5

approximately 10 sec [104].
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Chapter 18 

Theory of Jet Propulsion

Modern military technology is interested in jet-propelled missiles. By complicat

ing the design :>f the missile and reducing the efficiency of gunpowder as compared with 

conventional artillery systems one attains the substitution of the heavy gunbarrel by a 

light guiding rod. One also eliminates recoil. According to a course by Serebryakov [112],

be useful for military operations in the mountains or for landing operations. They may also 

be useful for installing missiles on airplanes, motor cars, small ships, etc.

The diagram of a jet-propelled missile

of outflow (Chapter 3). Howeyer, in order to better acquaint ourselves with the problem 

and the particular features of supersonic outflow, we being with studying the simpler 

case of an incompressible fluid.

Let us imagine an apparatus (Fig. 46) consisting of a chamber with a simple, 

tapering nozzle. Pressure in the chamber is denoted by p, pressure in the ambient 

medium (atmosphere) is denoted by p^, and the area of the nozzle outlet is denoted by F.

Both theory and experiments show that in a short nozzle with a smooth outline, 

outflow velocity satisfies very precisely Bernoulli's law and the jet fills the entire cross 

section. Thus

published before World War n, these properties of jet-propelled missiles may turn out to

(Fig. 45) is taken from M Aua [ill] . The

a) flopox

gunpowder is contained in a chamber, and the 

combustion products escape under high pres

sure (Rua gives calculations for pressures
F«g. 45. up to 500 atmospheres) from a Laval nozzle.

•CODE: a) Gunpowder. Computation of jet propulsion under these

conditions is based on the gas dynamic theory

- i—' Px— Pi G tt /'(?«. (xvra-i)
where G is the weight rate of the fluid.
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Pressure in the outlet cross section

of the jet does not differ from p^. We 

surround the apparatus with a control surface. 

The momentum acquired by the fluid during 

Fig. 46. a time t is equal to the product of the out

flowed amount of fluid times velocity. 

According to Newton's second law, the acquired momentum is equal to the momentum 

acting on the fluid. According to Newton's third law, the force acting from the side of 

the apparatus on the fluid is identical with the reaction force R experienced by the 

apparatus.

We assume that the direction of the force towards the left is positive (Fig. 46), 

and the direction of velocity to the right is positive, and obtain the equation for the 

momentum I

I= R i= G (u = F Z u lu ,  (X V m -2)

R = F qu\  (X V m -3)

We substitute the velocity expression derived from Bernoulli's law and find

R = 2 F ( p —Pl). (X V m -4)

The result is remarkable in that from this formula there have been eliminated 

the quantities characterizing the properties of the fluid. The jet power is proportional 

to the difference in the pressure that causes outflow.

Now we approach the computation of R from another angle, and determine the 

resultant of pressure forces on the inner and outer surfaces of the apparatus. Let us 

assume that the nozzle is closed by a plug . Pressure p is acting on the inner surface 

of the apparatus and on the surface o f ' e plug, while pressure p^ is acting on the outer 

surface. The resultant force for a sealed apparatus ( i .e ., the apparatus, the nozzle, 

and the plug iak«m as a whole) is equal to zero. The force acting on plug is R^ =

= -F(p - Pj). It is obvious that the resultant force acting on the entire surface of the 

apparatus, but without the plug, is R^ = F(p - Pj) since R^ + R^ = 0. However, the
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expression for R given above is twice as large. This paradox is due to the fact that by 

removing the plug from the nozzle, force R that acts on the apparatus increases two
fold as compared with force R^ at the instant when the plug has already been removed 

from the apparatus but is still inside the nozzle. As the plug is removed the fluid begins 

to flow out. The fluid acquires momentum gradually in the tapering nozzle. According 

to Bernoulli's law, the motion ofthe fluid is accompanied by a drop in pressure. The drop 
in the pressure on the surface portions abutting with the opening (AB, CD) givfs resul

tant Rg, which is equal to R̂ , so that

We shall not go here into determining Rg. The result Rg= R̂ , R = 2Rj holds for 

any smooth nozzle profile that ensures a rate coefficient equal to 1.
In evaluating the quality of the performance of the jet-propelled apparatus, it 

would be pointless to use the energy efficiency, i.e., the ratio of the work performed 

by jet power to the thermal energy of the burnt fuel or gunpowder. As a matter cf fact, 
jet power depends on the design of the apparatus and the nozzle, and on the regime of 
the processes that take place in the apparatus, whereas the work performed by that 

force depends on the velocity of the apparatus as a whole. Hence the energy efficiency 
also depends on the velocity of the apparatus. With an assigned constant degree of per

fection of all the internal processes, efficiency will change with the change in the velocity 
of the apparatus so that energy efficiency in this case is not a standard for determining 
the perfection of the apparatus.

An extremely important index for the quality of performance of the jet-powered 

device is momentum 1̂ , known as unit momentum, i.e., the jet momentum developed 

by the outflow of a unit of mass. Unit momentum is equal to the ratio of force to rate

M ~  c i~ c "
From the above formulas we get for an incompressible fluid

(XVm-5)

/i =  u =  \̂ 2 (/>—/>,)/t*. (XVIH-6)
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Unit momentum is equal to outflow velocity when measuring all the quantities by 

the absolute (physical) CGS system. In an actual system the dimension of 1̂  is kg of 

f'.>rce x aec/kg of mass or, numerically, I - u/g, where g is gravity acceleration
For an incompressible fluid, outflow velocity and unit momentum are proportional 

to the square root of the difference in pressures in the chamber and in the surrounding 

medium. To achieve optimum effect it is desirable to increase outflow velocity by in
creasing the pressure differential. In the case of outflow of gas-lfre gunpowder com
bustion products under increased pressure, we run into the effect of incompressibility, 

into the need of using an expanding Laval nozzle and into phenomena of critical and 
supersonic outflow.

A Laval nozzle is characterized by two cross sections, namely, a minimal one 
(critical) and an outlet one Fa > F̂ . In the following we denote Fa/F^ = 6. In 

the critical cross section we attain critical pressure which represents a specific por
tion of the pressure in the chamber (about 55%). Pressure p , attained in the outletSI
cross section F , depends on 9 . Below we investigate an ideal gas having constant 
thermal capacity. In this case

—= I7 m(0). (X V m -7 )

The outflow velocity attained at the outlet of the no:. :le, according to the 

St. -Venant-Wenttzel formula, depends on pressure. As we did it in Chapter 3 (see 

Fig. 6), we refer outflow velocity to sound velocity at the initial state

(IIm) =  g>(0). (X V m -8 )

If the nozzle is so chosen that it agrees with pressure p, which exists in the 

chamber, then pressure in the jet in the outlet cross section p does not differ froma
atmospheric pressure p., .

P * = P ii o =  o(®)- (XVm-9)
In this case, the jet as it leaves the nozzle is in a mechanical equilibrium with 

the surrounding medium, and the velocity of the jet as it leaves the nozzle does not 

change (u = un, for the notation of u. see below).St X 1
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We surround the apparatus with a control surface (see Fig. 46). Pressure on the 

control surface is equal to atmospheric pressure everywhere, including those spots 

where the surface intersects with the outlet cress section of the jet since, as stipulated, 
Pa = p̂ . In this case the resultant of the pressure on the control surface is equal to zero. 

Jet power is equal to the product of the rate times the velocity at the outlet cross section 

of the nozzle
K= Gu„ (x v m -io )

Unit momentum is equal to outlet velocity, exactly as in the case of outflow of an incom
pressible fluid. The differences from an incompressible fluid amount to the following:

1) a more complex dependence of outflow velocity on pressure, and 2) the fact that to 
achieve the regime under investigation, for which p = p., we must have a specificw a 1
widening of the Laval nozzle that depends on the ratio p̂ /p. In an incompressible fluid 
the equality p = p. was obtained automatically, at the outflow from any nozzle, including

Si X

the simplest tapering nozzle which gives the smallest losses from friction and turbulence.

Fig. 47a.
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The results from computations by the St.-Venant-Wenttzel formula for an ideal 
gas with an adiabatic index of 1.25 are given graphically in Figs. 47a and 47b, The 

value K = 1.25 was obtained by D. A. Frank-Kamenetskiy for the combustion products 

of smokeless gunpowder. On the ordinate (Figs. 47a and 47b) are marked the values
If

for 7 =  --. and on the abscissa we find the values for the ratio Pj/p. The corresponding 
values for 9 and p/p  ̂are also marked on the abscissa.

3

/

Wf ox m  m  
~MhtyJpayioMsg to % u  

9  *

Fig. 47b.

With assigned Pj (atmospheric pressure) and pressure p in the chamber we set up 
the ratio pj/p, find on the upper scale the corresponding abscissa value, and on the 
bottom scale we find %. Outflow velocity and unit momentum are read on the heavy 
line 9 . Thus

t = c t =V't = ? ci. (x v m - ii)

According to internal ballistics it is customary to characterize die state of gun
powder combustion products by gunpowder power f ~ ~ . We neglect the deviations
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from the laws of an ideal gas and find

so that

A— iv— 9 'IW-

(x v r a - i2)

(x v m -i3 )

(x v m -i4 )

We go over to technical units and write
,  k g .  s e c' j “ — :---- 1*g

/  k g  /  k g  

dm̂  ̂  dm̂
2and, substituting k = 1.25, g = 981 cm/sec , we find

7, =  0.113
2 3Thus, for smokeless gunpowder with f = 1,000,000 kg/dm /kg/dm at a pressure

2 2 in the chamber p = 100 kg/cm and atmospheric p̂  = 1 kg/cm , we find
43

95=2.2, /j =  0.113 • 2.2 • 1000^250
k g

The value of <P is read on the diagram in Fig. 47b in which the region p /p most
2interesting from a practical point of view, ranging from 0 to 0.05 (p from 20 kg/cm up), is

magnified.

By substituting the expression of flow rate for critical outflow we express jet 

power by the critical cross section and pressure in the chamber (the subscript k refers 

to the quantities in the critical cross section)

R = G u a =  Fl Qkut u„ =  F1q0 ^

_r» Po CO' "j=  r kp ------------ «
P co c0

0 c0 Co

(x v m -i5 )

R =  const g> • Ft p =  0.74 '/■ (XVUI-16)

The numerical coefficient is found for the adiabatic exponent 1.25, for which 

Figs. 47a and 47b have been plotted. As in the case of an incompressible fluid, the last 

expression does not contain gas density, gas temperature and similar quantities. In 

the French literature the dimensionless ratio R/F^p is termed "coefficient de propulsion" 

(propulsion coefficient) (Serebryakov, Greten, Oppokov [112]).
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In the example given

(<p-=2.2, R =0.74• 2.2• Ftp — \ .63Fkp)

this coefficient reaches 1.63. In the case of outflow of an incompressible fluid referred 

to the pressure differential p -  p^, the coefficient was equal to 2.

What is the nature of the motion and how to compute jet power in the case where 

the widening of the nozzle 6 does net correspond to the pressure ratio? The gas jet 

flows out at supersonic velocity into the surrounding medium at a pressure in the jet 

in the outlet cross section p , that differs from atmospheric pressure p1. At the point
Si X

of contact, on the edge of the outlet cross section, the flow becomes perturbed. It 

widens, accompanied by an increase in velocity in the case of p > p . , or it is com-& X
pressed, accompanied by a decrease in velocity in the case of p <Pj. The progressive 

motion of the gas in the jet is added to the propagation of pertubations from the edge of 

the cross section to the axis of the jet. Owing to this, the surface on which individual 

flow lines are subject to disturbance, acquires the shape of a cone that leans on the 

outlet cross section and extends in the direction of the jet (sec Fig. 49 below).

In the outlet cross section proper, the flow is unperturbed, pressure is equal to p every- 

where and outflow velocity is u everywhere. The state of the flow in the outlet cross 

section depends on the state of the gas in the chamber and the widening of nozzle 6 , 

according to the formulas. The state of the flow, and, in particular, the quantities pA
and u , are completely independent of atmospheric pressure p . . This is obvious from

SL X

the fact that the perturbation caused by the difference between p& and p^ does not 

propagate into the outlet cross section.

Again we surround the apparatus by a

2
t— » f

} V- ■----

control surface which passes through the

) outlet cross section (surface 2, Fig. 48).
I

. Everywhere except at the outlet cross section
. J

of the nozzle F& pressure is equal to p^, but 
in F pressure is equal to p . The resultant£t ft
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pressure force is equal to F (p -  p.). In calculating jet power we must add thisa a i
quantity

R = G u.+ F ,(j,a- Pl). (XVIII-17)

We substitute

G=F.Qmu„ (XVIH-18)

and transform

A’ - - G(ti„ ~t- ) -= Guu (XVHI-19)

We introduce the quantity u^ which we define as follows:

/, =  Uj — u h- . (XVm-20)

This quantity represents the mean value of axial velocity of the jet where the 

pressure in the jet has become equal to atmospheric pressure. This can be proved 

by setting up the momentum equation for the control surface 1, Fig. 48, which is 

entered by the jet at pressure p and velocity u , and which the jet leaves at a pressure
3. a

and the velocity u^ sought.

It follows from this equation that unit momentum for P, 7  ̂Pi is precisely de

termined by velocity u. and not by outflow velocity u .
A St

It can be shown in a general form that for a given initial state of the gas in the 

chamber and a given p^, u^ reaches a maximum when pa = p^. In other words, the most 

expedient case is precisely the one examined by us earlier which involves a complete 

widening of the nozzle until pressure reaches atmospheric pressure.

To prove this we set up the derivative of Eq. (XVIII-20)

du\ __  ^ 5  ___1____ P t~ P l  _ rffo iV i)
dpa dpa f t t  “ a ( " a «»)" dp„ (XVIU-21)

According to Bernoulli's law (see Chapter 3), by differentiating Eq. (III-9) we find

dua _ ___t_
dpt $a ■'«
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_ (Aii «
For P„—Pi> — 0; We can readily show, be determining the sign of

4 & L , — “■>
”24 ^ < c

that here we are precisely dealing with a maximum of Up

This result is perfectly natural. By examining the pressure on the conical surface 

of the widening portion of the Laval nozzle, we satisfy ourselves that when P,~>P\ the 

lengthening of the cone (together with an increase of F and a decrease of p ) yields
St &

an additional term that increases jet power. When P,<Pi the lengthening of the 

cone yields a term that reduces jet power. We remind the reader of the remark :n 

Chapter 3. In all cases the jet, sooner or later after its outflow, acquires a pressure 

Pp However, in the case of Pi a portion of the pressure differential is expended 

for radial velocity components which do not create jet power.

From a practical point of view, a careful adjustment and control of the nozzle, 

especially in processes involving varying pressure in the chamber, for die purpose of 

continuously upholding p, = p .,a re  extremely complex. Of practicalinterest is the study4 A
of the performance of a jet-powered apparatus with an assigned constant nozzle, i. e . , an 

assigned 6  with variable pressures p and Pp

Equations (XVHI-13) and (XVIH-16), set up earlier, will keep their validity if, 

instead of velocity at the outflow of the jet u , we substitute the effective velocity 

Up given by Eq. (XVm-20). Instead of dimensionless velocity y = u jc 0 one should use 

The quantity p j  is a function with two variables 6  and lip  where = p^/p

9>i= Vi (o. n t). ( x v m -2 3 )

Function is closely connected with function p . From the foregoing we can 

establish the following properties cf p p

1) Jf 6  is constant, function p 1 is linearly dependent on lip

2) If 0  = Btflj), i. e . , in the case of a widened nozzle, corresponding to the ratio 

cf atmospheric pressure to pressure in the chamber, p   ̂= p  by definition.
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3) If 0^6(77,), 9x% ni) < 9 ( n i).

From this it follows that in the plane as shown in Figs. 47, a, b (see above) the 

dependence of p  1 on is  given, for an assigned constant 6 , by a straight line that 

touches the curve at that value of 11̂  which corresponds to the given 6 .

Figure 47 a, b shows a number of lines (0=const, 77J for 0  = 1, 2, 4. and 10.

In order to find, for example, (2; 0.05), we look for 0  = 2 on the bottom scale of 

6 , below the abscissa. The O -  scale has been plotted in accordance with the Laval 

nozzle theory, so that every 0  is placed under the corresponding 11̂ ; /7, (0=2)=0.115. 

On the curve ifi we find the corresponding point N and plot the tangent MRNQ (the tangent 

is labelled 0 = 2).

This tangent represents the function <pj (2, II j). For = 0.05 we find the point 

R, (2; 0.05) =  1.84. It is interesting to compare this value with the value of <p for an 

optimal widening of the nozzle for the given TIX: 0, (0.05) =  3.5; ?(0.05)=1.9I. The optimal 

nozzle yields a gain of 3.7%. Conversely, if one takes a nozzle without diffuser, 0 = 1 ,  

one would obtain with 77, =  0.05, g»i(l; 0.05)=1.63 (point S), a quantity that would be 15% less 

than optimal. As we see from the foregoing, the jet momentum is proportional to the 

quantities of <p̂  ((Eqs. (XVHI-13), (XVDI-16)).

For the sake of convenience the diagrams give also the scales for l/Tl^ = p/Py  

This quantity represents pressure in the chamber in the case in which = 1 atmosphere 

absolute.

Let us now take a closer look at the outflow from the nozzle with P.7-/V 

If p,^>Pitihe conical expansion wave (Fig. 49, lines a and b) at the edge of the 

nozzle is similar to the expansion wave at the edge of a thin plate placed into a super

sonic flow (see Fig. 44b, top left or bottom right portion). The surface a, on which

pressure begin? tc drop, propagates at sonic velocity c along the gas that moves ?.c aft

velocity u . Hence the generatrix of cone a forms with the flow direction the Mach angle.Si
a n a =  Sound velocity and the direction of flow after expansion are such that the
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subsequent characteristics form a more elongated external cone (b, Fig. 49). Pressure 

drop and change in velocity occur in the layer between surfaces a and b.

If Pm <  Pii the gas flowing out from the

nozzle is subjected to compression by a shock

wave which also has the shape of a cone. Since

the velocity of the shock wave is greater than

sound velocity and depends on its amplitude,

the Mach angle of the wave is the greater and the

cone the lower, the higher is pressure p^.

Finally, for some Pj the wave velocity is comparable to outflow velocity D = uq. In the

outlet cross section of the nozzle a plane shock wave is formed. At an even higher

pressure p^ at the outlet, the shock wave "hides" inside the diffuser of the Lavel nozzle.

In the shock wave, the supersonic flow changes into a subsonic flow. Pressure in a

subsonic flow in the wide part of the nozzle increases as the gas moves, since velocity

decreases and, in die terminology of hydraulic engineers, the kinetic head changes into

pressure. Beginning with that value of Pj at which the shock wave moves inside the nozzle

and changes the distribution of pressure on the surface of the nozzle, the equations and
44nomograms derived above for determining jet power are no longer valid.

Figure 50 shows experimental pressure distribution curves on the axis of a Laval 

nozzle through which water vapor is blown at varying counter-pressure at the nozzle 

outlet.

The curves have been taken from the turbine designer Stodoli, who also investigated 

and treated the abrupt increase in pressure as a Riemann-Hugoniot-Rankine shock 

wave.

By combining the laws of adiabatic flow (Chapter 3) with the concept of a shock 

wave inside or at the outlet of a nozzle, it became possible for us to determine the

Fig. 49.
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outflow regime for any pressure at the nozzle outlet between and pg (Fig. 11, 

Chapter 3).

— —PaccwoPHu: Mocu-conaa 8jfj<h)

Fig. 50.

CODE: a) Absolute pressure in the 
center of the jet; b) distance along 
the nozzle axis, in mm.
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Chapter 19 

Reflection of a Shock Wave

Let us imagine a solid placed in a space in which a shock wave propagates. At the

instant when the wave front reaches the solid, motion changes in comparison with the

motion involved in the propagation of a shock wave in free space. Let us clarify the

peculiar features of that motion, which determine the forces acting upon the solid.

Belyayev [2] at the Institute of Chemical Physics studied experimentally the conditions

that arise when shock waves are reflected or collide. He evaluated the pressure increase

from the reflected of a wave by comparing the buckling of two lead membranes, one of

which was placed tangentially and the other normally to the direction of the wave caused in

the a ir by the detonation of a TNT charge. In Fig. 51a the membrane disrupts only slightly

the conditions of propagation of a shock wave, and the magnitude of pressure p can be measured

by its buckling. Conversely, it is obvious that the force acting on the membrane placed normally

to the wave direction (Fig. 51b) depends also on the velocity of the gases in the shock wave. Becker
2

[38] following Riidenberg [83], kept this fact in mind and introduced the sum F = p + <p u as the 

characteristic of the wave momentum.

Riidenberg takes pressure to be 2F in the case of a normal impact against an obstacle. 

However, the introduction of 2F is, strictly speaking, not justified. Vlasov [3] correctly 

notes that this quantity differs by 5u% from the true value of pressure.

Fig. 51a.

CODE: a) Membrane; b) direction of 
wave; c) charge.

Fig. 51b.

CODE: a) Membrane; b) charge.
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Let ue investigate the conditioss at the inetant when in the test shown in Fig. 51b 

the shock wave reaches the membrane. By changing the reading system, we may say 

that at this instant the membrane begins to move at a velocity u with respect to the gas 

compressed in the shock wave. This motion of the membrane produces a second shock 

wave which propagates toward the first shock wave in the gas compressed by the first 

wave.

The first effect of the shock wave on the surface of the obstacle, which is perpen

dicular to the direction of the wave, is determined precisely by pressure p, in the counter-
x

wave which stops gas motion near the obstacle.
45Izmaylov (we quote from Belyayev's paper (2] whence we have also taken Figs. 

51-53) devised a general formula for pressure p^ at an arbitrary amplitude of pressure 

p in a incident (first) shock wave and an initial atmospheric pressure pQ

_ _ (3fe-i)p-q--i)p„
1 p q —\)p 1)pt,

o
and for k = 1.4

p-*-W
In the case of a small amplitude we get an acoustic result

(XIX-1)

(XIX-2)

Pi—Po — 2{p —pv)‘ (XIX-3)

In the case of a very large amplitude , p %> p.;. we reach the limit value

3/fc —1
Pi —  P’> & =  1.4, />. =  $/>. (XDC-4)

Belyayev points out that the conditions in a case of collision of two identical shock 

waves (see Fig. 52) do not differ from those under which a shock wave is reflected by t  

wall.

Within the precision limits of the test, Beleyayev'sexperiments corroborate! Eq. 

(XIX-2) for both reflection and collision. The results of the tests are compared to 

Eq. (XIX-2) in Fig. 53.
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Fig. 52. Measurement of pressure upon 
collision of two shock waves.

In the case of reflection of the shock 

wave by the membrane, during the first in

stant there appears a reflected wave that 

moves away from the membrane. In the ab

sence of lateral walls this moving away of the

wave must lead to its v/eakening, and
Fig. 53. Dependence of pressure during 

during a time of the order of d/c, where reflection and pairwise collison of shock
waves on the amplitude of the shock wave 

d is the diameter of the membrane, we (Measurements by A. F. Belyayev).

must get a transition to a steady flow CODE: a) Pj atmospheres absolute; b) pQ =

around the obstacle at a velocity u. We 1 atmos;* ere ab6£ " “ i 0) reftectiom d) oo1-

have to point out a very significant fact, 

namely, that the velocity of the gas com

pressed by a powerful shock wave exceeds sound velocity in the compressed gas. Thus, 

in case of a steady a ir flow around a body caused by a powerful shock wave we will 

obtain a transition similar to the one described earlier in Chapter 17, with a stationary 

shock wave in front of the obstacle (Fig. 54). However, the amplitude of the stationary 

shock wave is less than the initial value of the amplitude of the reflected wave, since in 

the stationary wave D^ = u, whereas in the reflected wave = u; Steady pressure 

on the membrane surface in the limit case of an extremely powerful wave in a diatomic 

gas is

Pr 5.24 P> (XEX-5)

instead of the initial value equal tc Pj = 8^ of Eq. (XIX-4).
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If the incident shock wave is weak, then, as before, at the instant of incidence there 

is formed a reflected wave. In the case of small amplitude, Eq. (XLX-3) yields

Pu)—P * Put, (XEX-6)

but after that the reflected wave rapidly weakens and fades into infinity. Steady 

pressure is computed by Bernoulli's formula

(XIX-7)

Computations show that if k = 1.4, to attain sonic velocity in a shock wave p must 

equal 4.5 pQ.

With />K<4.5, u <  c a spherical wave is formed (Fig. 55) which separates from the 

obstacle. The amplitude of the shock wave can be determined by means of flash photo

graphy (Fig. 55). We shall not dwell here on the details of the computation.

Fig. 54. Front of an acoustic wave ABC, 
that arises in a compressed gas during 
the passage of an extremely powerful 
shock wave MN past a small obstacle.
In the diode wave MN supersonic velocity 
of the compressed substance is achieved. 
Segmeut AB is the cross section of a 
Mach cone (see Fig. 12b).

Fig. 55. Spherical front of an acoustic wave 
generated in a compressed gas by a weak shock 
wave MN past an obstacle A. The amplitude 
of wave MN is not sufficient to attain super
sonic velocity (see Fig. 12).

In the pressure interval in the wave from

5 p0 to 10 - 15 p0 the measurement of the dip 

angle of Mach waves on a flash photograph (see Fig. 54) may serve for a precise determi

nation of the instant narameters of an incident shock wave.

Let us note, finally, that supersonic velocity of a compressed gas does by no means 

contradict the general theory which requires that D < c  +  u. In powerful shock waves.
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beginning with p/p^ = 4.5 upward, perturbation is not transmitted against the direction of flow 

of the gas, but any perturbation in the back is transmitted to the wave front.

Duhem [48] made it a point to note that in a shock wave in which density increases 

more than 2/(k -  1) times (which corresponds to a pressure increase p >  ^~ j^P o>  

i . e . , p"> 15.25pQ for k = 1.4), the propagation velocity of the shock wave with respect 

to tie  unperturbed gas is greater than sound velocity in the compressed gas, £>> e.

However, so far as we know, during a passage through D = c, there arise no special 

features in the behavior of the wave.
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Chapter 20 

The Effect of Explosives. Introduction

One of the most important areas of application for the theory of shock waves are 

explosives, explosions and their effects.

An explosion is a quick chemical reaction during which the explosive is entirely 

or partially converted into a gas of more or less high temperature.

Depending on the composition and the state of the substance, on the conditions 

under which the explosion takes place and on the conditions that cause the explosion, 

the chemical reaction takes place in different wrxys at varying velocities.

Only an extremely fast chemical reaction leads lo extremely wide differences in

pressure and propagation of shock waves, which represents a particular feature of the 
46explosion. For this reason we are particularly interested in the problem concerning 

the speed of the chemical reaction.

Any practically applicable explosive is chemically inert at room temperature. The 

chemical reaction, the explosion, occurs only after ignition (priming) of the explosive.

As a rule, the explosive is ignited at one spot only. The complex processes 

under investigation result in the fact that the chemical reaction in one layer provokes 

a chemical reaction in the neighboring layer, and so on. As a result we have the pro

pagation of the chemical reaction at a specific linear velocity (the dimension of that
-1 47velocity is length x time ) in the space covered by the explosive.

There arise two problems : one concerning the conditions and propagation rate of 

the reaction, and the other the distribution of pressure and other quantities in space at 

the instant the reaction i6 completed. The theoretical investigation of these problems 

exceeds the scope of the present monograph. Experience shows that in high explosives 

produced by modern technology, the propagation rate of the reaction reaches several 

thousands of meters per second and exceeds sound velocity in these substances. For 

this reason, in the case of central ignition, the outer portions of a high-explosive charge
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have no time to move from their places until the explosion is over. Mean density of 

explosion gases is equal to initial density of high explosives. Mean temperature of 

explosion products ranges from 1500 to 4000°K, depending on the type of high explosive.

According to Clapeyron's law, mean density 1.3, mean temperature 3000°K and 

mean molecular weight of the explosion product 25 should correspond to a pressure

.. JJ- 3000 - 22 400
273 • 2 i

—  1 3 0 0 0  a t m

In actual fact (because the gas is not ideal), however, mean pressure is several 

times higher. Moreover, reaction propagation results in an irregular distribution of 

pressure in the volume taken up by the explosion product. A part of the explosion pro

duct is in motion. The irregularity and the motion of the explosion product can be under

stood if one considers that different particles of the explosive react at different times. 

Taking this into consideration, maximum pressure in an explosion product attains 

100,000 to 400,000 atmospheres.

As the reaction is complected, the explosion products, the state which is described 

above, are surrounded by an unperturbed atmosphere. The expansion of the explosion 

products is accompaniedby the formation of a powerful shock wave.

During expansion, the explosion products cool off close to room temperature. They 

cover a volume which, as an average, exceeds 1000 times the volume of the explosive. 

Objects placed at a distance up to 10 radii of the charge are subject not only to the

effect of the shock wave propagating in the air, but also to the effect of the expanding
48explosion products.

Near the charge, while expansion is negligible and temperature and density of the 

explosion products are therefore great, a considerable thermal effect on the surface of 

the obstacle is quite characteristic.

Frequently explosion products contain carbon monoxide and hydrogen, especially in 

the case of explosives with a negative oxygen balance: the combination of carbon monoxide and
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hydrogen of the explosion products with the oxygen from the air is not only possible,

but probable. In the case of TNT, combustion temperature of the explosion products

(carbon monoxide and hydrogen of the explosion products) in air oxygen attains 220% of

explosion heat (the heat generated by the conversion of the explosive into explosion 
49products).

At the present time it is not understood how and when there occurs a reaction of

CO and Hg contained in the explosion products with air oxygen, and to which extent the
50energy from the reaction is used as the mechanical energy oi the explosion.

As they expand, the explosion products act as a piston and push the air in front 

of them. A good (close to 1) efficiency in utilization of chemical explosion energy during 

the first stage of the process, corresponds to the considerable expansion of explosion 

products.

The propagation of the shock wave due to the irreversible nature of compression 

in the wave is accompanied by the dissipation of mechanical energy and its conversion 

into thermal energy. For this reason, it also accounts for the fact that as the wave 

propagates its surface and the amount of substance involved in the motion increase, and 

the wave's amplitude drops with distance.

Finally the wave reaches the obstacle. On the one hand, the wave is reflected and 

moves around the obstacle. This is a phenomenon that occurs in air and determines the 

force acting upon the obstacle. On the other hand, this causes the displacement and de

formation of the obstacle, i. e . , it causes those processes which, in the final analysis, 

determine the toppling or destruction of the obstacle.

We are facing here two typical cases. In the first case the action is determined 

by peak pressure; if peak, pressure is not sufficient to destroy the obstacle, the subsequent 

effect of weaker pressure will not change anything. This occurs when maximum force and 

deformation are attained very rapidly in the system to be destroyed, during a time less 

than the time during which pressure drops. An an example we can take die destruction 

of a solid steel plate by a charge placed on its surface.
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Destruction depends on maximum pressure, i. e . , on the type of explosive and the 

distance (gap) between the charge and the surface.

In the second case (which occurs more frequently), the shock wave action time is 

short as compared with destruction time. For example, we take the toppling of a brick 

wall 1.5 meters high and 0.25 m wide (Fig. 56). To achieve this one must impart a 

velocity of about 0.5 m/sec to the wall's gravity center. At such a velocity it will take 

about 0.25 sec for the gravity center to reach the highest point (which corresponds to the 

position of the wall shown by the dashed line).

//
>/

Fig. 56.

It is obvious that the action time of the 

shock wave is considerably les6 than 0.25 sec.

In fact the wave covers about 100 m during 

C. ?5 sec. Consequently, during the shock 

wave action time the displacement of the wall 

is negligible, the wall only gathers velocity 

and with that velocity motion continues by 

inertia until the final action of the wave. The acquired velocity does not depend on the 

magnitude of peak pressure; but on the area of the pressure-time curve, i. e . , on the 

pressure momentum, which determines whether or not the wall be toppled.

If an elastic structure, e. g . , one consisting of long metallic rods, is to be destroyed, 

then, compared with destruction time (the time of deformation required for destruction), the 

action time of the wave will also be small as will the shifts and displacements occurring 

during that time. The maximum deformations dangerous for the structure arise later, 

after a time equal to one-fourth of the period of ice system's proper oscillation. Shock 

wave pressure at that time no longer acts on the system, and deformation occurs by inertia 

on account of the velocity gathered from the beginning.

Later on, when investigating the propagation of shock waves from the detonation of 

explosives, we will have to study the change of both parameters that characterize a shock

174



wave, namely, maximum pressure and general momentum. The ratio of the momentum

to maximum pressure characterizes the actual action time of shock wave pressure.

Of great importance is the interaction between wave and object when measuring

pressure and momentum, or the effect of a shock wave on an object. We have seen

above (Chapter 19), that due to reflection, pressure on a surface placed normally to

the wave front exceeds several times that exerted on a surface placed tangentially to

it. Furthermore, the force momentum depends on how the air compressed

in the wave flows around the object. Hence the relationship between the pressure
52momentum of the wave and the force momentum experienced by the object also depends 

on the ratio of the action time of shock wave pressure to the time the wave flows around 

the object.
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Chapter 21

Simulation of an Explosion and of the Propagation of Blast Waves

The complexity of analytic computation of even the simplest symmetric and 

schematic problems requires the establishment of a method of simulating explosions 

and their effect on a small scale, and the determination of laws governing the application 

on a large scale of the results obtained on a small scale. In other words, it becomes 

necessary to establish laws of similarity.

In Chapters 6 and 16 we have seen that gas dynamics equations contain only a 

specific characteristic velocity (sound velocity) but do not contain either length [distance] or time. 

In Chapter 18 we showed that in the propagation of shock waves the introduction of dissipa

tive quantities does not introduce a characteristic length. Hence there is the possibility of 

setting an arbitrary scale in the case of simulation. Similarity will be ensured if all the 

dimensions are changed in accordance with the rules of geometric similarity.

If we investigate the problem of the propagation of explosion pressure, for reasons 

of similarity, it is also necessary that the properties of the explosion products be in a 

certain relationship with the corresponding quantities characterizing the properties of 

air. This refers to sound velocity, the density the pressure of explosion products and of the 

air.

Since the properties of a ir under atmospheric pressure are known and constant, 

similarity will be maintained if we maintain the properties of the explosion products.

hi order to maintain the properties of the explosion products it is necessary to 

fulfill two conditions, the first of which is the conservation of the properties of the 

explosive.

Ib is is a very simple condition. During simulation one must use the same 

explosive with the same charge density as if it were the case of an actual explosion.

This condition is necessary but not sufficient. It is also accessary that this similarity 

not be violated during the explosion process, i. e , , during the process of the chemical
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It cannot be expected that the similarity will be maintained in full. A chemical 

reaction is characterized by a specific rate, i. e . , by a specific time required for its 

completion. However, it has been mentioned many times that gas dynamic phenomena 

have a charactersitic propagation velocity in cm/sec. For this reason, as we change 

the geometric scale of the test, all the times change proportionally. For instance, if a 

model is one-tenth the size of the actual charge, then the time for the passage of the shock 

wave from the charge to the obstacle is one-tenth that of the actual one. As we change 

the scale, there occurs a change in the ratio between the reaction time and other times 

which depend on the motion of the gas. This, generally speaking, violates similarity.

It has been known for a long time that blast velocity measured for explosivesc
of small-diameter shells, turns out to be reduced with respect to normal values measured 

in large-diameter shells. Blast velocity depends on the size (as this is required by 

similarity), only beginning with a specific, sufficiently large diameter.

A striking expression of the violation of similarity is encountered in an investi

gation performed by Yu.B. Khariton et al. [116], who studied the phenomenon of a 

critical diameter (for the blast): charges of liquid nitroglycerin enclosed in pipes of a 

large diameter detonate (with due priming), but in very narrow pipes detonation "dies off'

- and therefore does not propagate.

It is obvious that as we measure shock waves of charges with varying diameters, 

even if all the other conditions (of geometric similarity) are kept, we will get completely 

different results if the critical diameter of the pipe is exceeded.

As the blast propagates, new layers of the explosive are involved by the layers 

transformed earlier into explosion products by the chemical reaction. At the present 

time, the part played by various factors (the effect of high pressure on the reaction rate, 

heating from compression, heating of the explosive from contact and mixing with explo

sion products, etc.) is not quite understood. All we know is that the layer involved in 

the reaction is subjected to the effects of high pressure. Explosives contained in a 

fragile glass tube or any other thin shell tend to fly apart in all directions under high
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According to Yu. B. Khariton, the damping of the blast of an explosive having a 

small diameter is due precisely to the fact that the scattering time of the charge be

comes less than the chemical reaction time. The explosive is scattered, and pressure 

drops before the actual reaction has a chance to take place. With a larger diameter, 

scattering time of the charge increases, too. If it exceeds the chemical reaction time, 

a nondamp^-d blast becomes possible.

The existence of a critical diameter violates the similarity of the explosion of 

charges of various sizes. On the other hand, it gives us a criterion by which to de

termine the conditions in the region in which the similarity is to occur.

To obtain similarity it is necessary that the reaction rate be low as compared 

with other characteristic times. From Yu. B. Khariton's critical diameter theory we 

can conclude that the explosion of two charges of the same shape but different size will 

be similar to one another if all the dimensions of the smaller charge (and, therefore, 

the dimensions of the larger charge) exceed several times the critical diameter.

It must be attempted to obtain a complete blast both in the larger and smaller 

charges. Similarity is violated where completeness of the reaction increases with an 

increasing charge. But the completeness of a reaction cannot exceed 100%, hence we 

can assume that starting with a certain sufficiently large dimension similarity will be 

maintained.

Suppose that similarity is maintained. How do we project the data gathered from 

a model on events taking place in nature? All geometric dimensions are reduced to scale. 

We select as a characteristic dimension a charge with a radius R. Similarity points, 

i. e . , those where all phenomena evolve in a similar fashion, will be points the distance 

of which, from the center of the charge, are in the same relation to the radii of the 

charges, that is, points at which are equal the ratios x./R, y/R, x/R or (in the case of 

spherical symmetry) r/R , where r  is the distance of the point from the center of 

symmetry.
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Pressure in similar systems is identical since atmospheric pressure of the a ir 

is identical, and maximum pressure of the explosion products is identical, which follows 

from the identity of explosion product density and explosion temperature. As already 

mentioned, the time in similar systems is proprotional to their dimensions. Hence, 

if we compare the curves of die dependence of pressure on time, we will find that they 

are transformed

I -t ' f i  r\—mem, j>J" (XXI-1)

In order to deal with a dimensionless function, we write die above formula as follows

P = P o-/(LHr* * ) ’ (XXI-2)

where pQ is characteristic pressure (for instance, atmospheric pressure), cQ is 

characteristic velocity (for instance, sound velocity in the air).

We are interested above all in two quantities, maximum pressure and total pres

sure momentum. We find for these quantities

Pt*i —/v T (■£")>

(XXI-3)

= ' ’■ £ " ’( Tf)'

Maximum pressure at similar points is identical, and pressure momentum at 

similar points is proportional to the scale of R. Completely analogous formulas also 

hold for the motion of gases. At eimilar points maximum gas velocity is identical, the 

curves of velocity change with time are similar, and the displacement of particles is 

proprotional to the scale of R.

Freasure on the surface of the obstacle differs from pressure in the shock wave 

and depends on reflection and the flow around the obstacle by the wave. If the obstacles 

are similar, these phenomena will also be similar. Maximum pressure on the surface 

of the obstacle differs from maximum pressure in the shock wave by a factor that depends 

on die amplitude of the wave (see Chapter 19), that is, on p/p0- Thus, maximum pressure
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of a reflected wave depends only on the ratio of the lengths of r/R . A formula like the 

one for pressure momentum refers in exactly the same way to the momentum acting on 

a unit of surface of the obstacle, so that the momentum per unit area on similar sur

faces is proportional to the dimension of the charge.

It is the task of experimental and theoretical investigation to determine pressure 

as a function of two variables of f (tc^/R, r/R). This is an extremely complex problem, 

hence it is expedient to determine first of all two functions of dimensionless distance 

*V/, which characterize maximum pressure and total momentum. We try to deterrr1'-,° 

them in a freely propagating wave, and we also seek these functions in the presence f 

a specific, stand arc type of reflection and flowing around. Thus, Sadovskiy used 

instruments built intc a high, solid wall. In this case, obviously, we are dealing with 

the reflection of a shock wave without flow around the obstacle.

For a substance with a specific density, the radius simply depends on the 

weight of the charge. The investigators give their data in the form of a dependence of 

pressure and momentum on the distance r  and the mass of the charge m. Since m —
O

R'*, similarity theory leads to the following dependences

* ( & - ) •  (X X M )53

Finally, in a moderately wide pressure change interval, it is natural to seek the

definition of the quantities to be determined as power functions of the weight of the charge 

and the distance

P_ _ =  c o n s t  • r *  m * ;  i = c o n s t  • r*m*.

The similarity Kws connect the exponents. From Eq. (XXI-4) it follows that

« - f - 3 * = 0 ;  c - i - 3 r f = l .  ( X X I - 5 )

The formulas given in the literature for maximum pressure in a shock wave satisfy the 

requirements of similarity theory. For instance, for great distances, the formula
j.—

. >mpw =const- — -i-po.
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is adopted. However, when processing experimental data, one for the momentum, 

frequently resorts to the formula

/ — const r (XXI-7)

which contradicts Eq. (XXI-5). Such a deviation may depend on the nonobservance of 

similarity conditions when measuring the momentum, especially in the case of powerful 

charges and great distances. Vlasov [3] and Savich [113] give formulas for the momentum 

which are completely correct from the viewpoint of similarity theory.

It was noted above that one of the similarity conditions is the constancy of explosive 

density. Sadovskiv established experimentally that with a > 1 (m, kg) the parameters 

of a shock wave depend only on the weight of the charge but not on its density, in which 

case Eq. (XXI-4) rather than (XXL-2) holds. These experiments compared the effect of 

the explosion of pressed TNT and powder TNT of varying density (from 1.6 to 0.3), where 

decrease in pressure and momentum did not exceed 2 to 3%.

On the other hand, a low-density charge exploded in normal atmosphere can be
54regarded as being similar to a high-density charge exploded in air under high pressure.

Under this assumption, Sadovskiy’s results permit us to predict, with the aid of 

similarity theory, the dependence of the quantities characterizing the wave on the density 

of air. We give here, without their derivation, the final formulas in which air density is 

expressed by its pressure pQ and temperature TQ

p V b --~\ V m l 0
(XXI-8)

or, for power functions, the realtionship between the exponents of distance r, charge 

mass m, and atmospheric pressure p^ and temperature TQ, which we do not regard as 

constant here,

— const • i =  co n str,_ J I ,m'f/>a, “ rf T/'.

Exaclty the same relationship between exponents can be obtained assuming that 

Pm - p^ depends on the parameters according to the exponential law. At a great distance.
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the damping of pressure change amplitude and momentum is inversely proportional to the 

distance. Let us take here this limit law as a result of the experiment. In that case we 

get

Pu, — Pi const- r~ 1 .n"ip£li Tti'h\ i =  const • r~l 7V'i.

It would be interesting to study experimentally the problem of the effect of atmospheric 

conditions on the propagation of shock waves. A change in the temperature from +40 to -4Q“C 

changes t J /3  by 10%, T^/3  by 22%.

Although spherical propagation of shock waves is much more important, cylindric 

and one-dimensional propagation are also of some interest. Cylindric propagation 

occurs when a long charge explodes, and the shock wave is radiated at a distance from 

the charge which is less than the length of the charge. One-dimensional propagation occurs 

when a shock wave propagates in a pipe. The extremal laws derived above for spherical 

propagation can be readily changed for the latter two cases. Thus, in the one-dimensional 

case

/W  '  ■■ P i n'i /('/«;i).

where m^ is the mass of explosive per unit of cross section.

Motion at a short (or small as compared with die dimensions of the charge) distance 

from the surface of the charge can also be regarded as one-dimensional motion. In this 

case, however, particular care must be used on account of the dependence of the distri

bution of the pressure and motion of explosion products on the character of blast wave 

propagation, which is spherical with central priming of the charge, or plane with 

simultaneous priming along a plane parallel to the surface of the charge ([8], 2nd paper).

Simulation is particularly valuable when studying the propagation of waves under 

difficult or complex geometric conditions, for instance when studying various methods 

for protecting ventilation ducts from blast waves, the difraction laws of a shock wave 

at the obstacle, and so on [11?]. It is obvious that in these cases it is essential to 

maintain similarity both in the position of the surfaces reflecting the shock waves and in 

the position of the meas ruing instruments. The results of measurements depend not
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only on the distance of the instrument, from the charge, but also on its position with 

respect to the obstacles, etc.
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Chapter 22

Simulation and Similarity of Destructions Caused by Shock Waves

Destruction occurs when the stress in a material reaches limit values. Similarity 

will therefore be achieved if we use the same material in the model as in the actual 

case, and, of course, if the model is geometrically similar to the actual object.

By using the same material we will be sure to have a similarity in the propagation 

of the shock wave, in its transition from one medium to the other, and so on. We have 

seen that the ctaracteristic pressure amplitude is constant. In similar explosions the 

pressures are identical ct similar poiats.

The regions in which the stresses caused by the explosion exceed the permissible 

values and bring about the destruction of the material will also be similar.

Destruction requires that a specific deformation be reached, i. e . , that certain 

particles of the body be shifted with respect to other particles. Inertial forces and 

elasticity prevent deformation and destruction from occurring instantly. Could it be 

that the existence of a specific deformation time will lead to a violation of similarity?

But we can easily see that similarity will be maintained. It is precisely the inertia 

of the substance, which depends on density, and its elasticity that determine the speed of 

sound in the substance. It can be formally shown by means of analysis that from density 

and elasticity we can plot deformation time only on the basis of the dimensions of the 

body, and this will be the time required by the wave to pass through the body. The time 

will turn out to be proportional to the size of the body. If we change the scale, defor

mation time changes following the same law as the one governing the shock wave action 

time, and the relationship between the times will remain constant. This ensures 

similarity of the phenomena.

Similarity is also applicable to the more complex type of destruction, in which 

the shock wave momentum is decisive (see Chapter 20) rather than peak pressure.

Let us take an elastic beam, the oscillation period of which exceeds shock wave
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By reducing the dimensions of the charge, the beam and the distance between them by 

a factor of n, the oscillation period of the beam will decrease by a factor of n, and the 

frequency will increase by a factor of n. This can readily be verified with the aid of 

elasticity theory for any specidic practical method of securing the beam.

The mass has decreased by a factor of n , at a similar point the shock wave

momentum per unit of surface has decreased by a factor of n on account of a decrease

of the shock wave width and a decrease in shock wave action time at a constant peak
2pressure, and the surface receiving the pressure has decreased by a factor of n . Thus 

linear velocity reached by the beam as a result of the effect of pressure momentum will 

be independent of the size of the beam. The amplitude of the oscillations will be of the 

order of the product of velocity x period, i. e . , it will be proportional to the size of the 

beam. Hence we see that the relative deformation and density of elastic energy proportional 

to the square of initial velocity are identical in the model and in actuality. The result v/ill 

also be identical, namely, the presence or the absence of destruction. Let us note that 

similarity will no: be violated by friction which depends on velocity and on the load in the case 

when the load is also assigned in the fundamental shock wave action, since velocity and pres

sure are the same in similar systems.

A less trivial case is the one frequently encountered in structural mechanics. It 

is the case in which the stability of the structure and the effort required for its destruction 

depend on the structure's weight. The simplest instance of this kind is the sandy area 

without cohesion. Another instance is a stack of bricks, the solidity of which depends on 

the weighi of the bricks and on the friction produced by the pressure of one brick on the 

other. Khariton emphasizes that such a type of stabiltiy very frequently determines the 

resistance of a structure to destruction. The stack of bricks represents one extreme 

example in which the weight determines internal cohesion. A solid steel box, which 

is easier to topple as a whole tban to destory, is another extreme example in which 

the explosion works agaiust the force of gravity.
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Here the impossibility of a strict similarity is obvious. The theory now includes
o

acceleration of gravity g expressed in terms of length/time . Together with the characteristic 

velocities of the explosion process, e . g . , Cq, the presence of g permits the plotting of 

the length, e. g ., cQ2/g  and time Cg/g. The absence of similarity is obvious: if we 

compare two charges of different size buried in the sand at an appropriate depth, we can 

see that the pressure of the soil at the level of the charge is proportional to the depth, 

and to the size of the charge. Likewise, minimum pressure required for the toppling 

of a wall in the second example is also proportional to the size. However, atmospheric 

pressure and blast pressure do not depend on the size.

Thus, with a change in size there is also a change in the ratio of soil pressure or 

the pressure required for the beginning of destruction to blast pressure, and similarity 

is therefore violated.

An excellent simulation method was proposed by Pokrovskiy [109]. To obtain 

similarity as we change the scale of the experiment, we must also change the length 

proportionally. Pokrovskiy obtains this by changing acceleration, and replacing gravity 

with centrifugal force. The model is exploded on a centrifuge and the dimensions are 

reduced with respect to nature at the same ratio of centripetal acceleration to acceleration 

of gravity. We can readily verify that soil pressure at similar depths will be similar.

Pokrovskiy made extensive use of his method for the purpose of modeling large- 

scale.explosions for excavation, and also for the purpose of studying the effect of various 

soils and different positions of the charge on the result of explosions. The linear modeling 

scale in his experiments reached 29, i. e . , all the dimensions of the model were reduced 

by a factor of 29 as compared with the dimensions of the real object. Tbe weight of the 

charge, which characterized the cost of the experiment, was reduced by a factor of 

25,000.

Zel'dovich and Khariton proposed an approximate method for simulating the work 

of explosives against the forces of gravity. It is based on the fact that the new criterion

186



’ on which depends the absence of similarity in the case of a change in scale, differs

appreciably from unity. Thus, if we write this criterion as a ratio of characteristic
2 / 2 length Cq /g to the size of the charge R, then for a charge weighing 1 kg we get ĉ  /gR =

52 x 10 . The ratio of static soil pressure to blast pressure yields, at a crater depth of
-4 -5several meters, a quanity of the order of 10 - 10 . Thus, the c~ 'terion in the most

varied formulations turns out to be sharply different from unity. This means that we 

are dealing here with the case in which not all the quantities are of the same order. It 

is obvious that we find ourselves in the domain of extreme or critical laws, in a domain, 
that is, in which we may expect self-simulation in the same way as self-simulation 
arises in hydrodynamics at very high or very low Reynolds Numbers.

We now have to find the physical nature of this self-simulation.
Let us give a closer look to the toppling of a wall (see Fig. 56). At the beginning 

of the preceding chapter we brought it up as an instance for a process which lasts con

siderably longer than the action of the shock wave (in this case the time ratio yields 
another criterion which sharply differs from unity), i. e., a process in which the 

decisive role is played by the general wave momentum. We divided the process into 
two stages: 1) the action of the wave on the object which determines its momentum, and 

2) themotion of the object by inertia, which overcomes the force of gravity, and we 

readily find the conditions for similarity.

In fact, the object's momentum K, equal to the force momentum, (for a geometrically 
similar change of the system, in which the dimensions of the object and the distance be

tween the object and the charge change proportionally to the dimension of charge R) is 

proportional to

K - ■ Ft —  A* • -° /? ~ — R , (XXII-1)c0 ci

where F is the area on which the wave acts, i is the pressure momentum per unit of 

surface. The momentum of the object sufficient for its toppling will be determined as
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follows. The object's kinetic energy is equated to the work required for lifting the 

gravity center of the object to a height proportional to the size of the object,

M s R- (XXn-2)

Into K of Eq. (XXII-1) we substitute the expression of the object's mass M  by the char
acteristic dimension R and the object's density tp, and get

-  i f f y * ! # (xxn-3)

The sign idem adopted in similarity theory signifies that similarity will take place 

if the term on the left remains constant. For all explosions in the air under normal 
conditions ĉ  = const, p̂  = const, the criterion is simplified and q* g R — idem.

This criterion also cincludes exact simulation - the change in accleration g is 

inversely proportional to the size R (centrifugal simulation). But on the basis of the 
approximations made earlier we obtained a criterion which also admits another solution: 
the change in density is inversely proportional to the root of its dimensions. This method 

was proposed by Khariton and this author [105]. This method allows for a sufficiently 
wide change in the scale. By substituting a material with density 2 (stone) with a 

material with density 11 (lead) it becomes possible tc reduce R by a factor of 30, which 

corresponds to the reduction of the charge by a factor of 27,000, i. e., it is possible 
to simulate the explosion of 1 ton of explosive by the explosion of 49 g of tl«e same sub

stance.
In Khariton's many experiments, the edgewise standing bricks turned out to be con

venient indices for the distance at which the momentum of a shock wave drops to a specific 

value.
It is obvious that centrifugal simulation is necessary in more complex cases in which, 

along with a rigid structure, the soil also plays a role. The approximate simulation by 

changing density, as proposed by Khariton and this author, is considerably narrower in 

scope and the advantage of this method is only the simplicity of experimentation.
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Chapter 23

Phenomena Occurring in the Immediate Vicinity of the Charge 

Similarity theory makes it possible to reduce the relation between the quantities 
that characterize the effect of an explosion and the charge mass and the distance to two 

dimensionless functions with one dimensionless variable. By determining the form of 

these functions we will get a clear idea of the explosion phenomenon and the ensuing 

propagation of the shock wave. Here we are not going to study the explosion proper, 
i.e., the propagation of the blast wave along the explosive accomapnied by a chemical 

reaction which transforms the explosive into an explosion product or products. Our 

investigation will begin when the blast wave reaches the surface of the charge. We 
assume that the wall of the charge is very thin and hence ignore its effect. At a given 

instant of time the following will be abutting: on the one hand the unperturbed air or the 

material to be destroyed, and on the other hand the explosion products which have just 
been formed as a result of chemical reaction.

Computations relating to degeneration theory show that these explosion products 
move in the direction of the propagation of the blast wave. Their density is higher than 

mean density of explosion products so that pressure is twice as high as mean pressure. 

If the explosive is bordering on the obstacle, then at the instant when the blast wave 
reaches the boundary, the moving explosion products collide with the obstacle and 

are abruptly inhibited or stopped. At the pressures with which we are dealing, any 

material is plastic. The velocity acquired by the material of the obstacle under the 

effect of the explosive products is bounded not so much by the strength of the material 

as by its inertia, i. e., density and compressibility (the latter determines the velocity 
at which the disturbance propagates and, hence, the amount of Material involved in the 

motion per unit of time).

When explosion products hit steel or iron (density 7.8, whereas the explosion 

products density does not exceed 2. 5) we can say that the motion of the explosion
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products is virtually stopped. At this instant a shock wave begins to move from the 

boundary into the charge, which stops and compresses the explosion products. Qualitatively 

this phenomenon is analogous to the reflection of a shock wave (Chapter 19). Quantitatively 
there is a certain difference, and computations show that the pressure of the explosion 

products increases approximately twice when the shock wave hits an obstacle.

If the explosive is of low density, and if the explosion products can be considered 

and ideal gas, then in the shock wave front the velocity of the explosion products amounts 

to about 45% of detonation velocity, density in the wave front attains 180% of *he initial 
one, and the temperature rises 10% as compared to mean temperature. Pressure there
fore increases by a factor of 2 as compared with mean pressure P or the pressure which 
:s developed by a slow adiabiatic reaction of an explosive with constant volume. Ixmaylov 

showed ‘hat this pressure is almost tripled (and thus reaches 5-6 p ) when the explosion 

products are slowed down by an absolutely hard (rigid) obstacle placed in the path of the blast 
wave. However, the explosion of commerical explosives deviates considerably from 

ideal conditions. The ratio of explosion product velocity to blast velocity decreases.

The ratio of explosion product density in the wave front to the mean density of explosion 

products also decreases. But, at the same time, the compressibility of explosion pro

ducts also decreases. An identical change in density causes a change in pressure greater 

than in an ideal gas; sound velocity also increases; hence the impact against the obstacle 
becomes harder. The pressure ratio, of mean p, maximum p ^  in a detonation wave, the 

pressure of reflection of a shock wave by a rigid obstacle Pre£j found for an ideal gas, 

changes somewhat in dense explosion products with considerable deviations from ideal 

conditions.
Table 5 shows the fundamental constants for some characteristic explosion products. 

These are explosion heat Q kcal/kg, the volume taken up by the explosion products under 

normal conditions (0°C, 1 atmosphere), Vq liter/kg; explosion product temperature in the 

blast wave front T^K, detonation velocity at low density D^m/sec, and explosion
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product velocity in the wave front u^m/sec computed according to detonation theory 

without taking into account any deviation from ideal conditions, initial density of ex- 

plosives <P0 g/cm or kg/liter, and detonation velocity D m/sec measured at this 
density. The difference between O and D.^ characterizes the deviation of the state of 

the explosion products from ideal conditions. In the following columns we have computed 

the density of explosion products 0  and explosion product velocity in the direction of the 
propagation of the wave u. is the pressure of explosion products in the detonation 
wave computed considering the deviation from ideal c traditions and compression of explosion 
products in the wave. The column Prejj shows the pressure developed by an abrupt declaration of 

explosion products, whereas their velocity and state are determined in the preceding columns.

Table 5

Q ^ 0

■‘to
T p o ra i  ’.  . a )  . . .  j j \ .
HuTpOBCBTaapHTpHT . . 
HiiTporAtiBcpHaC) . . .

1085 685 3630 1930 890
1
i 1.591530 768 5000 2400 1090 i 1.601517 716 5200 2360 1080 I 1.60

A sba  c a H w g a ^  . . . . .200> 
325* ‘

270'
230*

2800 1250 570 4.70

. D 0 - <6
1 

1 <D
__ 'Wjj

TpoTM a)................... ...  .
H>TpoaeHT39pB̂DHTDl .

6900 2.10 1700 190000 439050 i
7900 2.12 2000 250000 560050 iHHTporAMiiepRH P) .  . . 7900 2.12 2000 250000 560000

A sha  caauyad) « . . . 5890 6.30 1500 400 000 900000
i

^Computed for lead in vapor form.
9Computed for liquid lead.

CODE: a) TNT, b) nitropentaerythritol; c) nitroglycerine; 
d) lead azide; e) det; f) refl; g) id.

Computations based on detonation theory (considering ideal explosion products), 

were performed by Dautriche [119], Schmidt [124], and Vlasov (3]. The computations 

were based on the assumption that we can apply the equation of state to explosion products

191



with constant b, or a vlaue of b that depends on specific volume v (Schmidt). Landau 

showed that in reality this equation of state is not applicable to the density attained in 
explosion products. Molecules cannot be considered incompressible. In the firp* approxi

mation explosion product pressure depends on the density of explosion products (pro
portional to the cube of the density), but does not depend on temperature. Landau's and 

Stanyukovich's computations (107), performed in 1944, show that the measured detonation 

rate corresponds to a smaller specific volume and a higher pressure as compared with 
earlier computations. Khariton noted that the equation of state adopted by Landau re

quires an appreciable amount of blast energy to perform the compression of explosion 

products, and the temperature of explosion products (with a high initial density of the 
explosive) is considerably lower than the one given in the table under T^.

The structure of a detonation wave is characterized by the fact that at the instant 

it is formed the explosion products have maximum density, velocity and pressure.
Behind the wave front there follows a more or less rapid deceleration and expansion of 

explosion products [8, 108]. All the values for pressure given here are referred to the 
wave crest. Immediately after the collision between the wave and the obstacle, i. e., 

after a tremendous pressure has been developed, pressure begins to drop quite 

rapidly. Below, when we study the pressure momentum of an explosive, we shall see
how the time during which pressure drops is determined. In order to magnitude this

—6time is equal to R x 10 sec, if R is the effective radius of the charge expressed in
—6centimeters. For a charge of 1 kg this time is of the order of 5 x 10 sec.

To compute the time we juxtapose the force momentum and maximum pressure.

Let us imagine a charge of 1 kg TNT in the form of a cylinder 10 cm in diameter and
28 cm high. The area of the cylinder base is 80 cm . Assuming maximum pressure 

developed at the reflection of the wave to be 430,000 atmospheres, we get the maximum 

force that acts on the obstacle on which the charge is placed, namely, 3.5 x 10 1%.



The momentum value of 100 kg x sec/kg found experimentally (Kudryavtsev's experi

ments, quoted here from Sadovskly) corresponds to the effective action time of the force
—6computed above, namely, 3 x 10 sec. For sound velocity in explosion products of the

order of 5 x 105 cm/sec (we find this value from the measured detonation rate) the time
-6during which an expansion wave covers a distance of 5 cm amounts of 10 x 10 sec.

It is obvious that in reality pressure drops gradually and attains atmospheric values
—6 —6during a considerably longer time. The quantities 3 x 10 or 10 x 10 sec are 

only effective values, i. , they are the time during which pressure drops several 
times.

What happens when the detonation wave reaches the free charge surface which 

borders on the air? When the explosive is exhausted, the incandescent explosion pro
ducts (in motion and under high pressure) are in contact with the unperturbed air. The 

surface of the charge becomes the surface of pressure discontinuity, and of the dis

continuity of velocity and gas tmeperature (Fig. 57). Thus, we are dealing here with 
the problem discussed in Chapter 16. The expanded and accelerated explosion products 

speed forward in the direction in which the blast wave propagated, pushiug the air in 

front of them and compressing it (Fig. 58). The motion of the boundary of the expanded 
explosion products and of the compressed air is determined from the condition of pressure 

equality on both sides of this boundary. The only new element as compared with Chapter 
16 is the fact that on the discontinuity surface there also occurs a change in chemical 

composition (explosion predicts —  air). As the discontinuity propagates, the surface 

of the change of composition coincides identically with the surface of the discontinuity of 

special kind on which there occurs the change in temperature and entropy without changes 
in pressure and velocity. All the results of Chapter 16 remain valid.

Emile Jouguet [120] applied the theory of propagation of an arbitrary discontinuity' 

to the computation of a shock wave arising on the surface of a detonating explosive. He 

performed his computations in connection with the experiments carried out by Perrota and
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) 6 o j fy i a)

Fig. 57.

CODE: a) Explosion products; b) air.
Fig. 58.

CODE: a) Explosion products; b) air.

Gawthrop [122]. The same problem was studied later by Landau and Stanyukovich ] 108].

The results agree with the experimental data, in particular in the problem con
cerning the effect of the composition of the atmosphere surrounding the charge on the 

expansion rate. The velocity obtained by the shock wave in the air and the velocity of 

the interface between explosion products and the air are very high and may exceed the 

detonation rate of the explosive with which they are not directly connected. In corres
pondence with the high velocity of the explosion products that compress the air, there 
occurs in the shock wave a pressure which is high compared with atmospheric pressure, 

but which amounts to a mir.or portion of the initial pressure of the explosion products.

If the air is enclosed as a thin layer between the explosive charge and the obstacle, 

then the shock wave, once it reaches the surface of the obstacle, will be reflected and 
will change its direction. When the reflected wave will reach the interface between the 

explosion products and the air, there will be a partial passage through the explosion 

products, and so on. The layer of air between the explosive and the obstacle delays the 
increase in pressure acting on the wall and, hence, delays the instant when maximum 

pressure is attained. If the explosion products were abl6 to exert continuous pressure, 

the presence of die layer of air would not change the final pressure exerted on the wall, 
as a soft pad does not reduce the pressure of a load on the base. In reality, the structure 
of a detonation wave determines a rapid pressure drop which depends on the levelling of the 
pressure and the expansion of explosion products in a direction opposite to the direction 

of detonation propagation (i.e., toward the center of the charge). The delay in the trans

mission of explosion product pressure to the obstacle (due to the presence of the air gap)
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results in that during that delay the explosion product pressure drops and maximum 

pressure acting on the obstacle also decreases. The extremely sharp dependence of the 

disruptive force of an explosion on the distance between the charge and the armor plate ie 
well-known.

The instructions of the engineering corps for demolition work (Voyenizdat NKO 

{National Commisariat of Defense], 1S41) gives the following rule. To penetrate a steel 

sheet, the weight of the charge must be given in terms of 25 grams of normal explosive 

per 1 cm^ of the cross section to be penetrated. The cross section is computed as the 

product of the length of the line along which penetration occurs, and the thickness of the 
sheet.

In the case of an air gap between armor plate and charge, or if the armor plate 

consists of steel sheets with air gaps in between, the 'Instructions" require that the air 

gap be added to the calculated thickness of the sheet.
Thus, according to the rule (which, of course, is approximate) one must conclude 

that a charge which, for example, can penetrate a 5 cm thick steel sheet if tightly 

attached to it, will penetrate an armor plate only 3 cm thick if it is placed at a distance 

of 2 cm from it.

The pattern will be different if at some distance from the charge there is a body 

the dimensions of which are small as compared with the distance from the charge. Such 

a body will first be subjected to the effect of an air shock wave. Soon after the reflection 

of the shock wave by the surface of the body, the shock wave travels further around the 
body. After this the force acting on the body becomes the drag of the body in a 

flow of air compressed by the shock wave, and depends on the density and air velo.ity 
and the resistivity factor of the body. Then the interface between the explosion product 

reaches the body, and further on the body is flowed around by the expanded explosion 

products rather than by air. On the interface the explosion product pressure does not 

differ from air pressure. How does the force change that acts upon the body? To
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answer this question we must compare the deusity oi explosion products and that of air.

The expansion of explosion products occurs isentropicaliy and is accompanied by 

a temperature drop in the explosion products. The compression of air by the shock wave 

following Hugoniot's adiabatic curve causes an increase in temperature.

A rough, approximate computation performed for TNT (for the initial data see 

table) detonated in the air yields the following results. The velocity of expanded explosion 

products, equal to the velocity of compressed air, is 4700 m/sec; the pressure of expanded 
explosion products and of compressed air is 250 atmospheres. The temperature of ex

plosion products drops to 1100rK (830°C), the density oi explosion products is 0.1 g/cm**; 
in the air the shock wave propagates at a velocity of 5250 m/sec, air temperature reaches

O
?600°K and density is 0.012 g/cm , The absolute value of wave velocity agrees sufficiently 
well with the data of Perrota and Gawthrop, who recorded a wave velocity of 4600 m/sec

in air, and 5560 m/sec in hydrogen in the case of a weaker explosive (density 1.32,
55detonation rate 4600 m/sec).

Let us note that as a result of the expansion of explosion products there occurs a 

temperature inversion: the temperature of compressed air turns out to be considerably 

higher than that of the explosion products in contact with it. There is no contradiction 

with the principles of thermodynamics here. We have only isentrcpic processes (expansion) 

and these are accompanied by entropy increase (compression in the shock wave). The first 
prinicple also is not violated: the amount of air compressed in a unit of time is con

siderably smaller than the amount of expanding explosion products.

The molecular weight of air and the explosion products in the ĉ se of explosion of

organic substances only differ slightly from one another. With equal pressure, the density
56ratio is inverse to the temperature ratio. The density of expanded explosion products 

is considerably greater t h a n  the density of compressed air. The force acting on the body 

grows approximately proportionally to the density at the i zstant when Ihn explosion pro

ducts expand and reach the body. At the same time (and this seems surprising) the thermal
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effect co the body's surface also increases. The temperature of explosion products is

lower than the temperature of compressed air, but in the case of supersonic flow one

must take into account both the thermal and the kinetic energy of the moving gas (see
Chapter 4, "temperature at rest").

The velocity of explosion products and of the air are identical, and the conversion

of kinetic energy into thermal energy increases the temperature by an identical quantify.

Thus, the difference in the "temperature at rest" of the air and of explosion products is

relatively smaller than the difference in the true temperatures of the air and of explosion
products. In the example given above, where the true temperatures of air (7600°) and of

e;tplosion products (1100°) are in a 7 : 1 ratio, the temperature at rest of air (24000°) and
57of explosion products (17000°) are in a 1.4 : 1 ratio. The intensity of the thermal effect

depends not only on the temperature of the gas surrounding the body, but also on other
*

factors which determine the intensity of the heat flow, in the case under st̂ dy, the heat 

flow and the thermal effect increase on account of an explosion product density increased 
eight-fold as compared with the density of air.

Experiments confirming the above were performed by Michel-Levy and Muraour [121] 
in 1934-1836. They studied the problem of the nature of the luminescence of the explosion 

of lead azide crystals. Photographs show that this luminescence is particularly intense 

where the shock waves collide. The intensity of luminescence and its spectrum depend 
essentially on the atmosphere surrounding the crystals. The most intense luminescence 

occurs in> argon, and the least intensive one in butane, in accordance with the thermal 

capacity of the substances. With a given gas composition (argon), increased pressure 

reduces the intensity of luminescence in accordance with the change in shock wave amplitude. 

An exquietie experiment is the one in which a metal (barium) was introduced into the ex
plosive and the gas. When a barium compound was added to an azide charge, barium lines 

could not be detected in the luminescence spectrum. In other experiments, barium was 

introduced into the gaseous phase by burning prior to the experiment a small amount of a
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pyrotechnic compound which yields a finely divided, slowly settling smoke that contains 

barium oxide and carbonate. In the latter case, after explosion, the luminescence 

spectrum abunded with barium lines. Together with excited barium atoms, the spectrum 
reveals the existence of excited barium ions, and thus reminds us of a spark spectrum 

rather than an arc spectrum. Michel-Levy's and Muraour's tests show that at blast in 

the atmosphere surrounding the explosive there arise shock waves of a wide amplitude 
which heat the gas to tremendous temperatures, exceeding many times the temperature 

of explosion products. These temperatures are particularly high owing to the low thermal 
capacity of argon. All the facts observed agree with this.

In a theoretical paper, Jouguet [120] compares the propagation of shock waves from 

an explosion in gases of different molecular weight (hydrogen, air, and carbon dioxide). 
The velocity of wraves caused in various me .ia is in good agreement with test data.

Jouguet does not perform a direct computation of absolute values, and thus avoids the 
problem of detonation theory of explosives and the state of explosion products of high 

density. Instead, Jouguet uses the velocity of a shock wave in m e air to characterize 

the state of explosion products, and from there computes the velocity of waves in other 

media.
Vlasov [3] goes many steps further. He overcomes great difficulties which depend 

on the fact that he is dealing with non-ideal media, and computes the parameters of a 
shock wave in air and its velocity. His results are in good agreement with tests data

CO(nitromannite: Vlasov computed 6100 m/sec, andByurlo observed 6430 m/sec). To 

characterize the state of explosion products Vlasov uses the measured detonation rate.

We must also mention here the extremely interesting and exhaustive computations 
performed by A. A. Grib on the surface of explosives, contained in his dissertation [102] 

(Leningrad Mining Institute, 1940). The problem is solved under the assumption of a 

distribution of pressure and motion which correspond to an instant chemical reaction of 

the entire explosive, condensed or gaseous.
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Finally, let us dwell on the second possibility of interpreting the explosive momentum. 

According to computations mentioned above, a charge weighing m kg placed on a surface, 

dovelops at blast at a force momentum I = 100 m kg/sec. According to Chapter 18, such 

a momentum corresponds to a mean value of the velocity component of explosion products, 

a normal surface uq = 100 g = 1000 m/sec.

The force momentum turns out to be cne-half to one-third of the force momentum 

developed by an ordered outflow of explosion products from a Laval nozzle of a je t engine 

in which all the explosion products move in one direction. We can readily see that at 

the explosion of an open charge the explosion- products expand uniformly in all directions 

of the hemisphere. We denote mean velocity in the radial directionbyflr , and find ur  = 2uq = 

2000 m/sec. Half the momentum is lost as a result of the expansion of explosion pro

ducts not only in the direction normal to the wall but also in other directions.
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Chapter 24

Laws Governing the Propagation of a Shock Wave at a 

Great Distance from the Charge

In the preceding chapter we studied the phenomena that occur in the immediate 

vicinity of the charge. For the quantitative estimates we proceeded from the idea that 

detonation theory determines the state cf explosion products in the blast wave front 

independently of the shape of the charge, the position of the primer and similar factors. 

All these factors are very important for the pressure distribution. Owing to the fact, 

however, that detonation rate is exactly equal to the rate of disturbance propagation 

along the explosion products, these factors do not effect the detouation rate and the state 

in the wave front.

However, after the first contact between explosion products and the air (or the 

material to be destroyed) the motion will be affected by pressure distribution in the 

deeper layers of the explosion products. To determine the motion at this stage requires 

extremely laborious and complex computations, all the less attractive since the result is 

different for each case.

Only at the next stage can we expect that at a sufficient distance from the charge 

the dependence on the actual geometry oi the explosion will subside and a specific form 

of the shock wave will appear which depends only on the total amount of explosive but 

not on specific features of the given charge such as the position of the primer or the 

presence of a shell, or the shape of the charge, which are extremely important at a 

close distance. The condition imperative for the formation of such a steady wave form 

lies in the fact that motion involves a certain amount of air that must exceed the amount 

of explosive by at least several times.

When energy is transferred from the explosion products to the nearest layer of air, 

and from that layer to the next one, and so on, the wave becomes independent of the 

peculiar features specific for each single charge. We may expect the existence of two
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limit regions in accordance with the simplifications to which the laws of shock wave 

theory are subjected in two limit cases; 1) powerful shock waves, p p,lt and ?) weak 

shock waves p — p.■ <  i\.< which qualitiatively approach the characteristics of sound 

(see Chapter 3).

Is the first case, according to Landau, there will be a transit'.on to limit if we 

neglect Pq with respect to p. We may obviously disregard in this cai»e the initial tem

perature and energy of air with respect to its temperature and energy after compression 

by the shock wave. In such an approximation the distribution of pressure and temperature 

changes in time but remains similar to itself.

The critical laws of powerful shock waves provide for a constant relationship be

tween kinetic and thermal energy of the compressed substance. Total energy of all the 

substance involved in the motion is also constant during the motion time. In the case 

of the above simplifications, the involvment of new layers of air is not accompanied by 

any appreciable increase in total energy which is read from the absolute temperature 

zero.

Mean energy density drops inversely proportionally to the volume covered by the 

wave, i. e . , inversely proportionally to the third power of the path travelled by the wave. 

In the case of similar distribution, the local values of energy density drop in the same 

fashion. According to the laws of an ideal gas with constant thermal capacity, pressure 

depends only on energy density e, but not on the density of substance <>

P = ~ L = qRT— (/:—l)i* c, T - .  [ k - 1) s, (XXIV-1)

where R is the gas constant, lower R is the charge radius, r  is the distance from the 

charge center.

Thus, in the extreme case mentioned above, Landau arrives at the following simple 

formulas

p M 4.7
y r* i'.iJ I Q\!}

V" ’ A. (XXIV-2)
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where p and T  are mean pressure and temperature, Q is explosion heat of the explosive, 

M  ̂ is charge mass, M is the mass of air involved in the motion, On is initial air density. 

In reality, however, there is hardly a region in which this extreme law is strictly applied. 

For it to the applied, the follwoing two conditions must be satisfied at the same time

M

According to the formulas mentioned above

(XXIV-3)

a !  r  _  ê*pi
M , ' n ~ " r 0 m (X x iv -4 )

However, for explosion products and air at room temperature the ratio Texpj/T 0 does
>/ 7*

not exceed 10-15. The entire interval from Ootpi is covered while the

shock wave radius changes by 2 to 2.5 times.

In reality, however, for a small r  we must take into account the effect of the

initial distribution of pressure and density in explosion products. The ratio M/M^ (the

mass of the air involved in the motion to the mass of explosion products) reaches unity

at a value =  0.6 -°r > i. e . , at a distance equal to 11 charge radii. This same
y i i  y v  R

quantity gives the distance of the dir ect effect of explosion products on the obstacle.

However, already at ■■£=.= 1.5, at a distance equal to 27 charge radii, the amount of
y f . f

heat introduced by the air involved in the motion becomes equal to the explosion energy 

(all figures are given for typical explosives).

Mean pressure at this instant is twice that computed by the limit formula according
3

to which the drop of p is inversely proportional to r  . The descrepancy increases further
o

on. Vlasov [3] feels that there is a good agreement between experimental data and the 

formula for pressure on the obstacle normal to the direction of wave propagation

25oooo
(XXIV-5)

which be applies to the entire interval from r/R  = 1 (pressure on the body in contact
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with the explosive) to r/R  = 100. The theoretical conclusion of this formula is not 

convincing. It is impossible to descirbe with one single formula all the various different 

processes which depend on different factors (non-ideal condition of explosion products 

with r/R  close to 1, effect of explosion products with r/R  up to 10, a powerful shock 

wave with r/R  from 10 to 100, etc .). It must be noted that in the interval between com

puted values for r/R  = 1 and systematic measurements beginning withe £ >  l.\there is 

only one experimental point.

Thus, if we take Vlasov's formula to be empirical, then we cannot consider it 

verified in the entire interval for which it is recommended. We must admit, however, 

that in the interval in which measurements are made, their agreement with Vlasov's 

formula is satisfactory, whence the formula's practical applicability.

Let us now study the second extreme case, the propagation of a blast wave at a 

considerable distance from the charge, where its amplitude is small. At limit the 

propagation laws must, obviously, coincide with acoustic laws with which we already 

familiarized ourselves at the beginning of this monograph (Chapter 3). The acoustic 

laws provide for the propagation of a wave with an amplitude constant in the linear case 

and dropping, as 1/ r ,  in the spherical case, but without change in the wave width and 

form. Consequently, acoustic laws cannot be used to determine the form and the width 

of a wave even in die first approximation. Hence in the following we will have to pay 

particular attention of the deviations from acoustic laws, which decrease as the amplitude 

drops, and to experimental data regarding the amplitude and form of blast waves.

Figure 59 shows the curves of pressure change with time at different distances from 

the explosive charge, taken from the paper by Bernal' [101]. We note that the unperturbed 

air is subjected initially to a sharp compression which is followed by a pressure drop that 

passes through a minimum and returns to atmospheric values. Obviously, the instant 

distribution of pressure in space reminds us of the curves of pressure change with time,

2 to 3 milliseconds corresponding to a wave width of about 1 m.
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Thus, the front of a blast wave represents a shock wave which is followed by a 

rarefaction (expansion) wave. To predict the law of blast wave change, we have to 

remember the kinematic and thermodynamic relationships between a shock wave and 

a continuous expansion wave.

20 
i)

d) }' *-r>:\ '  m  ■) .

a) "Xi*-
*1
^  1 | \ e^ i'^/'7c:" 3/!/V.'uom
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0.3
0.2
0.!

6 OS C)
X5*- f) 3300}. or,) sr.nfc. (S.!5. i] f a  'i 

? -------------------- 1“  |
§

. f a  |
cm wrrfc [12.2.«] f a  ^

,  1«1 ŜfxdnllS AW jflf

In a continuous wave in which neighboring 

states differ infinitesimally, each propagates in 

space at a velocity equal to the sum of sound 

velocity and substance velocity.

The velocity of shock wa ve propagation 

is less than the sums of motion velocity and 

sound velocity in the substance compressed by 

the wave within the region covered by motion. 

Pressure drop inside the regions through which 

the wave has passed is transmitted to the shock 

wave surface and weakens the wave. Hence the
0 20 is

b) Mu/it'.uctkgrabi amplitude of a shock wave drops faster than
1 i  t  s t r i o

c*iM drops the amplitude of a weak sound wave.

Fig. 59. Another peculiar feature of the shock

CODE: a) Pressure, feet/square inches; 
b) milliseconds; c) pressure, kg/cm2; 
d) 10 feetfrom charge (3.0 m); e) 20 feet 
from charge (6.1 m); f) 30 feet from 
charge (9.15 m); g) 40 feet from charge 
(12.2 m); h) 50 feet from charge 

(15.25m).

wave propagation investigated here consists 

in the fact that entropy changes with shock 

compression. As a consequence, after the 

passage of the wave the air does not return

to a state equivalent cr identical to its initial

state (prior to the disturbance).

In an acoustic wave, the energy of wave motion is fully transmitted from the layers 

involved earlier in the disturbance, to the layers which are involved in the motion as the
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wave propagates. In the case of a shock wave, a part of the energy of wave motion gets 

stuck forever in those layers through which the wave has passed, where it is irreversibly 

consumed for their heating. This circumstance causes a gradual decrease in the energy 

of wave motion in the case of a shock wave, and it also causes a drop in shock wave 

amplitude under conditions in which the amplitude of an acoustic wave is constant or 

increases the drop in the amplitude of a shock wave as compared with that of an acoustic 

wave under conditions in which the amplitude of an acoustic wave drops.

Finally, the need for the expansion of a wave of finite amplitude can be seen immediately.

Let us call a "wave" as before the entire region covered by the disturbance in which 

velocity ■>nd excess pressure (as compared with atmospheric) are different from zero. The 

front edge (with respect to the direction) of the wave represents a shock wave that com

presses the air. The velocity of this wave is greater than sound velocity in unperturbed

air. The back edge of the wave represents either a continuous wave (as iD Fig. 59) or a
59shock wave which returns the gas to its initial state. The velocity of the back edge 

is equal to or smaller than sound velocity in air in its initial state. Consequently, the 

front edge of the wave moves faster, whi ?h leads in time to an increase in the distance 

between the front and the back edge of the wave, i. e . , to an increase in the width of the 

wave.

In Chapter 11 we have proven in detail and in general the reciprocal connection 

of the three peculiar features: the fact that shock wave velocity is greater than sound 

velocity at the initial state; the fact that shock wave velocity is less than sound velocity 

in a compressed gas; the fact that the passage of a shock wave is accompanied by an 

increase in entropy, i. e . , by an irreversible conversion of energy into heat.

In view of the fact that these three characteristics are very closely connected, 

it is naiural that the use of any one among them to determine the law' of the change in 

amplitude and width of a wave as it propagates must lead to identical results.
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Before studying spherical propagation which interests us because of its association 

with the theory of explosives, we shall look into the simpler case of linear propagation. 

Linear (one-dimensional) motion occurs when a gas moves through a straight pipe

wilh a constant cross section. In studying this case we ignore the losses due to the 

interaction of the gas with the lateral walls of the pipe.

Crussard [118] established for the first time in 1918 the limit law of such a motion.

According to Crussard, we study a triangular wave shown in Fig. 60. As time goes 

by the distance between each pair of points a, b, which correspond to different pressures, 

increases so that propagation speed (equal to the sum of gas velocity and sound velocity) 

increases as pressure increases. A sa  whole, the wave represents a totality of shock 

wave U in which there occurs a rapid compression, and an expansion wave UP following 

it, in which gas pressure drops.

Fig. 60.

We write the equation of propagation of state a

(XXIV-6)

According to the laws of acoustics

(XXIV-7)

we write — and find
*m —  JTati Cat ~ 2 cu * a  i- (XXIV-8)
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If at the Initial instant there was a linear distribution of pressure depending on the
60coordinate, then it also remains linear later.

t = 0, x> *00, t  r=. — ( r  — jr0u); .V <  xIJ0, n =- 0; 8 (Xxrv-9)

■ * * )  — xo f a )  "ifiT eo n f  —  J’oo -»* o  e j -<• cv:t/:
*h-1

(XXIV-10)

X —n =  —
IH-

A'll.‘ — Cfit
*-»-i ;

2k (XXIV-11)

Given an initial linear distribution, Eq. (XXIV-9)” at the instant t  = 0, we obtain 

at an arbitrary instant t also a linear pressure distribution, Eq. (XXIV-11).

The velocity of shock wave D, the amplitude of which we drnote by tr*, is equal 

to the arithmetic mean of cQ and propagation velocity c + u of the state obtained after 

compression but prior to pressure it*.

D- C. I (c
2 C«*

l i l t /:-« 1 
' VI:'

2 (XXIV-12)

We write the expression for the change in the amplitude in the shock wave as it 

propagates
«/;t* _ 0;c ).(
~<l~t c* L d\ * (XXIV-13)

The expression differs from zero on account of the fact that D differs from c + u. 

Using the expression j t ( x ,  t), Eq. (XXIV-11), we find

rfrt- _/: -c-1 __ t.*
J t ~  t.k " C “  1 1 1

In** t ,o( ’ " H r 1'**)

(XXIV-14)

(XXIV-15)
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(XXIV-16)

where A is an integration constant and depends on the initial conditions.

If we know the relation between it, x  and t, we find the wave width Ax, i. e . , the 

distance from the point at which at a given instant ir= 0, to the point at which shock 

wave pressure n* is attained

Thus Crussard could establish that in the one-dimensional case the amplitude of the shock 

wave drops with respect to its propagation, as 1/vT, and the wave width increases pro

portionally with v7; 61 Crussard's original paper, written in 1912 - 1913, also contains 

an analysis which shows that this law applies to the case of small amplitude, that is 

an extreme law for a long propagation time.

In 1938, Shmushkevich [115] derived the same law in the following way. Assuming 

that the distribution of pressure in the wave remains similar with respect to propagation,

(at least within the limit, with large t, after the wave has covered a long path), Shmushkevich 

writes the equation of the rate of wave width change Ax and compares it with the equation 

of wave momentum constancy

In setting up the second equation (the momentum equation) we use the linear relation 

between velocity and pressure known from acoustics, and also use the assumption according 

to which the distribution remains similar to itself, so that 7.'— const • The two equations 

mentioned above can be readily solved

(XXIV-17)

(XXIV-18)

(XXIV-19)

4i ~  4 k
dAt L-4-1
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(Ax)* ̂  lilt court,

• Ax ^  /.‘.vV-T /?;, , - r _ J ? a . . . ,  ( x x r v - 2 i)
y/t li2

where B, Bj, B2 and Bg are constants.

Both Crus sard and ShmuBhkevich assume that after the passage of the wave the 

substance returns to its initial state, with initial sound velocity c^ and initial pressure 

i>-.p0, . T W e  disregard here the effects that depend on entropy change, which are 

proportional to the cube of the amplitude. This is permissible because we deal with 

equations that contain greater terms.

Instead of the change in wave width (Shmushkevich's investigations), we could also 

study the change of its free energy which depends on the conversion of energy into heat, 

i. e . , on the increase in entropy proportional to .1*3,

di~dt (conf't ‘ ‘ A v) -  — «onsi • (XXIV-22)

const • ;c* • Ax t'citS, (XXIV-19)

whence we get

dt ~ Lt • (XXIV-23)

Integration of Eq. (XXIV-23) gives a result which is identical with Eq. (XXIV-21).

Thus, by using the various properties of a shock wave (the fact that velocity 

D <e-«-u (Crussard), the fact that D> c0 (Shmushkevich), and the increase of entropy in 

the wave) we obtain an identical extreme law. This result depends on the inner connection 

between the properties of the wave mentioned above (see Chapter 11).

The experimental study of one-dimensional propagation of a shock wave was per

formed by Vieille [86], and later by Vautier [123], whose experiments are briefly de

scribed in Chapter 15.

Considerably more complex is the problem of limit laws of the propagation of 

spherical waves (over great distances). This problem is particularly interesting for 

studying the theory of brisance of explosives.
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We shall begin the study of spherical shock waves by going back to the antilogy of 

spherical acoustic waves.

The fundamental property of the latter is the decrease in amplitude which is inversely 

proprotional to the distance from the symmetry pressure. This decrease is not connected 

with a decrease in the total reserve of acoustic energy. The decrease in amplitude de

pends on the fact that as a spherical wave propagates, the amount of substance involved 

in its motion increases proportionally to the volume of the spherical layer.

The second property of spherical waves consists in that a compression wave is 

necessarily followed by a rarefaction (expansion) wave, if at the initial instant the center 

was surrounded by a compressed substance (Fig. 61a), its expansion causes a com

pression wave which is followed by a rarefaction wave (Fig. 61b, ABC and CDE). We 

also have two regions where pressure increases (AB and DE) and one region where 

pressure drops (BCD).

Fig. 61.

The dependence of propagation rate on amplitude causes a decrease in distances 

AB and DE, and an increase in distance BD. Landau [128] notes that at limit, after a 

sufiiciert amount time has elapsed (and after a sufficiently long path has been covered) 

the wn ve takes on a form that is shown in the bottom part of Fig. 61c with two shock
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From the instant the shock wave has been formed, further propagation is accompanied 

by dissipation of acoustic energy, and by its conversion into thermal energy'. The amplitude 

of maximum pressure drops faster than before, faster than according to the l / r  law.

Let us now find the quantitative rules, conserving the acoustic formula in Chapter 3

p(r — r0 t)
~  r (XXIV-24)

as a zero approximation. In the next approximation, instead of we substitute pro

pagation rate c + u which corresponds to a given state. We determine the change in 

distance between a pair of points, e. g ., m and n. to which correspond specific values

of u and u as the wave propagates r  m n

% ' - ( c  •■«). - c 9 ( i - .  k- " 2 k '  ' o f 1-

* i-I it, —r 
"  C°  "V/: ~  ~r (XX’Us (XXIV-25)

ilr cq i>i I- i (XXIV-26)

r»n -  -  " u  1 (.«»- / -.)1 '  ' (XXIV-27)62

We study the segment AB, and identify m = A, n = B, since Vi. > i‘ : Segment AB

grows smaller with the motion of the wave. At a distance r  such that

” ~  * < i" ’ (XXIV-28)

the length of segment r^g  becomes zero, i. e . , a shock wave is formed. This also 

applies to DE.

Conversely, the length of segment BCD, on which pres&ur- drops, increases as the 

wave propagates, so that the derivative decreases as t and r increase,

*  * a ~ n ~ inr
i
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where

Let us now study the law governing the change in shock wave amplitude. The 

quantity H* in the shock wave front drops because the shock wave propagation velocity 

is smaller than the state propagation velocity wi'h constant value of u. In analogy with the 

one-dimensional case we find

As we compare this result with one-dimensional propagation, we find a curious 

formal analogy: the dependence of ir on x in the one-dimensional case has the same 

form as the dependence of fi= irr on In r  in the spherical case.

Computations for the spherical case lead to the following conclusions:

1. The additional drop in amplitude, specific for shock waves, turns out to be 

very small at great distances, as (In, )"'/», as compared with the acoustic drop (r-1).

2. The limit form of the wave to which it tends when r~+ oo,becomes determined 

when In r  becomes sufficiently great. This requirement is much more stringent than 

the one according to which r  must be large. A high value of In r  can be attained for such 

large r  for which the absolute value of the wave amplitude becomes so small that its 

propagation loses interest altogether. New factors may be involved in the case of long 

propagation time.

-- - • «
(XXIV-30)

This equation can be readily integrated

(XXIV-31)
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The application of limit laws requires therefore great care. More in any other 

case one has to resort to experimental data despite their incompleteness.

Figure 59 showed the curves of the change of pressure with time measured at 

varying distances from the explosion site. These curves are taken from the paper of 

the well-known English physicist Bernal, "The Physics of Air Raids", published in 1941 

[101]. At the right-hand side of this figure we also give the metric measurements. The 

transition from curves ff(t) for r  = const to the instant propagation of pressure in space 

it (r) for t = const is quite complex since the propagation velocity and the amplitude are
•9

not constant.

To give an approximate idea of the thickness of the layer involved at each single 

instant by the distubance, in addition to the time scale we also give the cQt scale, which 

is the product of time by sound velocity in unperturbed air.

What can we learn from Fig. 59? Tests confirm the existence of an expansion 

wave which follows the compression wave. At great distances the product ol mean 

amplitude times expansion wave width approaches an identical value of the compression 

wave. The force momentum acting over a time interval (0.015 - 0.020 sec, as 

can be seen from the drawing) represents the difference in the effect of the compression 

wave and that of the expansion wave running in an opposite direction. This is why the 

force momentum drops faster than the wave amplitude.

In the theoretical portion, following Landau, we established that the limit form 

of the wave is distinguished by two pressure discontinuities, one in front and one in the 

back (see Fig. 60c). Bernal's curves do not show the formation of a pressure discontinuity 

in the back. By the shape of the last part of the expansion wave we shall precalculate the 

the distance at which this discontinuity has to take place.

We choose a curve with a well-expressed expansion wave recorded at a distance of 

20 feet from the charge (second from the top, Fig. 59).
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For r  = 6 m minimum pressure amounts to ir . = -0.04, and the distance o* u min
the minimum pressure m from point n at which pressure is restored amounts tc about

r mn0 = 3 “ •
M. = —0.04 • 6 = —0.24, fim =  0.

■Tmm =  iP m ~  A*.) ^  ~  =  3  ~  T  ' °*2 4  ,n  £  '
(XXIV-32)

Assuming that r mn = 0, we find the distance r  at which the discontinutiy is  formed:

k ^ = 6S ^  =  14*5; r =  r, e ,4-» =  12 - 10* m.

The wave will take on its extreme shape at a distance of 12,000 km. it is obvious 

that in this case all the statements referring to extreme shape have no realistic 

importance. The calculation leads us to conclude that in the case of spherical pro

pagation, the formation of a shock wave on account of the dependence of propagation 

velocity on amplitude occurs very slowly. The front shock 'wave, in which pressure 

increases with a jump up to maximum values, is not formed in this fashion. Rather, 

it is formed at the instant when the detonation of the charge is terminated and there 

occurs a contact of the explosion product* with the surrounding air. At this instant 

(at a distance from the center equal to the charge radius, about 6 cm for the charge to 

which Fig. 5? refers) its amplitude attains enormous values (see Chapter 23). With 

further propagation the amplitude drops, but the increase in pressure maintains the 

character of a shock wave.

There exists an extensive literature on the subject of pressure amplitude in a 

shock wave following an explosion. Older data, however, must be used with great cir

cumspection since for a correct measurement of a rapidly changing pressure sufficiently 

inertialess devices are required.

In most cases the surface of the device receiving the pressure was placed in a 

direction facing the propagation of the wave. When the wave reached the surface, it was
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reflected by it. Peak pressure increases two-fold in the case of weak waves, and 

more in the rase of great amplitudes (see Chapter 19). After processing the data of 

many authors, Vlasov derived the dependence

Pm — Po~*~ =  p0 ■+■ 44 ~ t (XXIV-33)

where p is the pressure developed at the reflection of the blast wave, m
P0 is atmospheric pressure,

r  is the distance from the explosion center, expressed in meters,

R is the effective charge radius (in m),

M is the weight of the charge (in kg); this formula holds true for explosives of the 

TNT types: outer explosives, varying considerably in their power, require the 

introduction or corrections.

Vlasov limits the applicability of his formula by the condition r >  85 /?, r >4.4 YM  t 

(the dependence is stronger than Eq. (XXIV-33) in the case of smaller distances). For 

the entire interval investigated by him, Sadovckiy gives the following expression for 

maximum pressure

I'M yM* M 
P„=Po-*~ 1 2 - ----- 22 Z -p --4- 147 7s- * (XXIV-34)

83Thus, at great distances Sadovskiy's formula gives pressure amplitude which is 

five times greater than the one yielded by Vlasov's formula: the coefficient for the 

highest term is 12 instead of 2.4. To clarify the real value of the amplitude Ave refer 

first of all to Bernal's data (Table 6).

The first four columns show the data from Bernal's experiments. According to 

maximum pressure p^ measured by him (read from the diagrams), pressure pm is 

computed according to the formula of shock wave reflection, Eq. (XK-2). We see from 

the table that beginning with pt —/?a ̂ 0.15, virtually — p«= 20»t — p,,)- Great distances

do confirm Vlasov's formula.
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Table 6

- n
r ii Ho,. U.*.acGii(|p'.»o:. ,;n~.

r. <I>>r J $ . .1 •» -. 

% ■ —p<l Pn-Tii1
r*.

10 3.05 l.p» 6.9 - Cl
70 6.10 c.:> o.-.o o / c 1.9
30 5 / 5 0;5 o.: r - '- 1 ./ •
<0 r  t o :  j 0j.: t (.<, 1
r ) l.V 0.16 0.1.'. o:<o

— . . . _ — „ „ — . ___ _____

CODE: a) Feet; b) kg; c) Bernal; d) Vlasov; 
e) Sadovskiy.

Could it be that the high pressures recorded by Sadovskiy are of very short duration, 

hence they have not been recorded by other authors using other methods? The best way 

to verify this is to set up a comparison with the propagation velocity of a shock wave that 

depends on amplitude (Table 7).

Table 7

a) Czopocllt COAIlU

bjCe.toncmiii C) Ecpiia.'b |d) [US]

« 432 470
8.6 414 35'. * 379

12.9 350 35-1 357

CODE: a) Wave velocity; b) Sadovskiy; c) Bernal; 
Experiment [113].

If we assign a specific value to the dependence of pressure on distance, we can 

find the values for velocity at any point. Computation of mean velocity requires a more 

complex procedure. In the table these values are compared with experimental data of 

French researchers taken from Savich [113], which determine the velocity of the wave. 

This comparison is also unfavorable for Eq. (XXIV-34).
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Let us finally note that the assumption of a sharp pressure peak contradicts 

theoretical concepts. Such a peak should be subjected to an exceedingly rapid weakening 

and expansion. From Bernal's curves we can find determine the rate of pressure change 

after shock compression and hence the law of amplitude change of the shock wave proper-

If for distances of 10 -  40 -  200 m (for a charge of 1 kg) we approximate the real 

law governing amplitude drop by the power function ji —const ■ r~\ then the value of 

exponent v within these limits drops from 1.4 to 1.25. At great distances the simple 

formula con-.t • r '• gives a satisfactory approximation to the true law.

We noted in Chapter 21 that the duration of the effect of blast wave pressure is 

proportional to the linear dimensions (e. g . , the radius) of the charge. The magnitude 

of the time involved will be obtained by setting up the ratio of the charge radius to 

sound velocity R/cQ.

Bernal's data show that the action time of a compression wave r  amounts to from 

0.03 to 0.05 sec, whereas R/c^ for his charge amounts to 0.06/330 -- 0. 0002". Thus, 

the dimensionless ratio ~ varies from 15 to 25 and thus differs noticeably from 

unity. The long duration and, consequently, the considerable expanse of the blast wave 

are quite natural. Wave width and duration of effect are maintained during propagation 

of a weak acoustic wave. We would have i : —« 1  in the case where the initial disturbance 

could be regarded as weak, i. e . , if the change in pressure in the region taken by the ex

plosive were small.

In reality, however, during the first stages of propagation the pressure amplitude is 

huge, hence the acoustic approximation is completely inapplicable. It can be regarded as 

approximately correct only from the instant when mean pressure in the region covered by 

the disturbance drops to 1 atmosphere. For conventional explosives the volume of this
3 3region reaches 10 m per 1 kg, to which corresponds a radius&'--=» 1.3j y7./(m, kg). The 

radius R' of the region in which mean pressure equals 1 atmosphere (2 atmospheres absolute) 

is 22 times greater than the charge radius. In accordance with our ideas the magnitude of 

r : — is actually of the order of unity.<U
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Because of the great width and long duration of the wave, the momentum of the 

pressure acting on the body's surface normal to the wave depends to a great extent on 

the conditions of wave reflection and of the flow around the body of the air set in motion 

by the wa^e. Apparently this is why there are so many contradictions in the scientific 

and experimental literature on this subject.

Bernal's curves make it possible to find (even though with poor accuracy) the 

efficiency of the conversion of explosive energy into blast wave energy. Blast wave 

energy consists of the kinetic energy of a ir motion and potential energy (equal to the 

work performed by the change in air pressure). It is obvious that both compression and 

expansion of air under atmospheric pressure require an output of energy and increases 

the system's potential energy.
2 3Total energy of a unit of volume is approximately equal to 25 (Ap/p) keal/m . 

Calculations for a distribution that corresponds to Bernal's curves yields an efficiency 

of about 30 -  40%. The energy of the compression wave and that of the expansion wave 

are at an approximate ratio of 3 : 1.

Thus, the energy of an explosive is converted into blast wave energy and is trans

ferred over a distance exceeding hundred and thousand-fold the size of the charge, with 

an efficiency of the same order as the one for the conversion of gunpowder energy into 

motion energy of the projectile in the gun or combustion energy of the fuel into mechanical 

energy in the engine.

REFERENCES

1. Alekseyeva, R.N. See Frankl' (27].

2. Belyayev, A. F. Otrazheniye i stolknoveniye udarnykh voln (Reflection and Collision 
of Shock Waves). Collection of articles on the theory of explosives, Oborongiz, 1940.

3. Vlasov, O.Ye. Vzryvnyye volny (Blast Waves). Voyen. inzh. akad., Moscow, 1937.

4. Gazovaya d'namika (Gas Dynamics). Collection of articles, GONTI, 1939.

5. Dyurend, V. F. Aerodinamika (Aerodynamics). GIZOboronprom, 1939.

218



6. Zhukovskiy, V.S. Izmereniye temperatury gazovogo potoka pri bol'shikh ^korostyakh 
(Measurement of the Temperature of a High-Velocity Gas Flow). Zburn. tekhn. flziki, 
8, 1938, 1938.

7. Zhukovskiy, N. Ye. O dvirhenli vody v otkrytom kanale i o dvizhenii gazov v trubakh 
(The Motion of Water in an Open Duct and the Motion of Gases in Pipes). Trudy 
TsAGI, No. 1, 1925.

3. Zel’dovich, Ya.B. K teorii rasprostraneniya detonatsii v gazakh. (On the Theory of 
the Propagation of Detonations in Gases). Zhurn, eksper. teor. fiziki, 10, 550, 1940: 
12, 389, 1942.

9. Zel'dovich, Ya.B., and Shchelkin, K.L Frimeneniye teorii rasprostraneniya proizvol'- 
nogo iazryva (Application of the Theory of Propagation of an Arbitrary Discontinuity). 
Zhurn, eksper. teor. fiziki, 10, 569, 1940.

10. Kibel’, I. A. Statsionarnaya temperatura plastinki v sverkhzvukovGm potoke (Steady- 
State Temperature of a Plate in a Supersonic Flow). Doklady Akad. nauk, SSSR, 25,
275, 1938.

11. Kibe!', I. A ,, and Frankl' F.I. O pryamolineynykh dvizheniyakh gaza (On Rectilinear 
Motion of a Gas). Bulletin TsAGI, No. 52.

12. Kibel', I.A. See Roze, N.V. [23]. Chapter 2, "Teoreticheskiye osnovy gazovoy 
dinamiki" (Theoretical Foundations of Gas Dynamics).

13. Konstantinov, B. P. Pogloshcheniye zvuka pri otrazhenii (Sound Absorption During 
Reflection). Zhurn. teknn. fiziki, 9, 226, 1939.

14. Kochin, N.Ye. See Roze, N.V. [23],

15. Landau, L .D ., and Lifshits Ye.M. Statisticheskaya fizika (Statistical Physics).
ONTI, 1938.

16. Leontovich, M. Zamechaniya k teorii pogloshcheniya zvuka v gazakh (Remarks on 
the Theory of Sound Absorption in Gases). Zhurn. eksper. geor. fiziki, 6, 561, 1936.

17. Leontovich, M ., and Mandel'shtam L. I. K teorii pogloshcheniya zvuka v zhidkostyakh 
(O vtorom koeffitsiyente vyazkosti). (On the Theory of Sound Absorption in Liquids 
(On the Second Viscosity Factor). Zhurn. eksp. tepr. fiziki, 7, 438, 1937.

18. Lifshits, Ye. See Landau, L.D. [15].

19. Makkoll (McCall ?), see Teylor Dzh. I. (Taylor J .I . ?)[24].

20. Mandel'shtam, L.I. See Leontovich, M. [17].

21. Peshl’, T ., Eval'd, P . , and Prandtl', L. Fizika uprugikh i zhidkikh tel (The 
Physics of Elastic and Liquid Bodies). GTTI, 1933.

22. Prandtl', L. see Pesh'l, T. [21], Chapters 4, 5, 6 (Hydrostatics, Hydraulics, 
Aerodynamics).

23. Roze, N.V., Kibel’, I.A. and Kochin, N.Ye. Teoreticheskaya gidromekhanika 
(Theoretical Hydromechanics), Part H, ONTI, 1937.

219



24. Teylor Dzh. 1. and Makkoll (Taylor J .I . and McCall ?). See Dyurend [5], Vol. in , 
Chapter on "Mechanics of a Compressible Fluid".

25. Teylor Dzh. 1. (Taylor, J .I . ?).See [4), page 29.

26. Frankl', F.I. Sverkhzvukovyye techeniya oscvoy simmetrii (Hypersonic Flows with 
Axial Symmetry). Izv. Arill. akad., No. 6, p. 91, 1934.

27. Frankl', F .I . , Khristianovich S.A ., and Alekeseyeva, R.N. Osnovy gazovoy 
dinamiki (Fundamentals of Gas Dynamics). Textbook, Detailed bibliography. Trudy 
TsAGI, No. 364, Moscow, 1939.

28. Frankl', F.I. See Kibel', I.A. [11).

29. Fok, V.A. Printsipial'noye znacheniye priblizhennykh metodov v fizike (The 
Fundamental Significance of Approximate Methods in Physics). Uspekhi fizich. 
nauk, 1070, 1936.

30. Khristianovich, S.A. See Frankl', F.I. [27].

31. Shirokov, M. F. Vliyaniye teploty treniya na protsessy peredachi tcpla pri bol'shikh 
skorostyakh potoka (The Effect of Friction Heat on Heat Transfer for High-Velocity 
Flows). Izv. Vses. Teplotekhn. inst. No. 9, pp. 26 -  30, 1935.

32. Shchelkin, K.I. See Zcl’dovich, Ya.B. [9].

33. Eval'd, P. See Peshl', T. [21).

34. Eykhenval'd, A. Alcusticheskiye volny bol'shoy amplitudy. (Acoustic Waves of Large 
Amplitudes). Uspekhi fizich. nauk, 14, 552, 1934.

35. Ackeret J. Handb. der Physik, Bd. VII, 1927.

36. Airy. Philos. Magaz., (3), 34, 401, 1849.

37. Bechert K. Ann. der Physik, (5) 37, 89, 1940; 38, I, 1940; 39, 169, 1941.

38. Becker E. ZS. f. Physik, 8, 326, 1920.

39. Busemann A. Handb. der Experimentalphysik, Bd. IV. T, 1934.

40. Busemann A. ZS. V .D .I., 84, 857, 1940.

41. Busemann A. ZS. Angew. Math., Mech., 8, 419, 1928.

42. Busemann A. ZS. Angew. Math. Mech., 9, 496, 1929.

43. Cagniard. Ann. de Physique, 13, 239, 1940.

44. Cranz C. u. Schardin H. ZS. f. Physik, 56, 170, 1929.

45. Crussard L. Bull, de la Soc. de l'Industrie Minerale de St. Etienne, 6, 25-71, 1907.

46. Duhem P. Cours d'Hydrodynamique. 1900.

220



47. Dufcem P. Comptes Rendus, 141, 811, 19Q5; 142, 324, 377, 431, 612, 750, 
1906; 144, 179, 1907.

48. Duhem P. ZS. Physikal. Chemie, 69, 169, 1909.

49. Eam8hawReverend Samuel. Philos. Trans.. 150. 133, 1858.

50. Einstein A. Sitzungsber. Berliner Akad. der Wissensch., p. 380, 1920.

51. Fanno. Techn. Hochschule, 1904.

52. FayK.D. Journ. Acoust. Society America, 223, 1931.

53. Ghiron E. F. Alta Frequenza, 4, 530, 1930.

54. Hadamard J. Lecons sur la propagation des ondes. Paris, 1908.

55. Hadamard J. Comptes Rendus, 141. 712, 1905.

56. Hugoniot H. Joum. ccole Polytechn., 57, 1887; 58, 1889.

57. Jenkins R. T. see Thuras A. L. [ 94] .

58. Jouguet E. Comptes Rendus; 138, 786 and 1685, 1904.

59. Jouguet E. Joum de Mathem., 6, 5, 1904.

60. Jouguet E. Mecanique des Explosifs. Paris, 1917.

61. Kirchhoff. Poggendorfs Annalen, 134. 177, 1868.

62. KneserH.O. Ann. der Physik, 11. 761 and 777, 1931.

63. KBgler see Mach E. [ 68] .

64. Kotchine N. Rendiconti del Circolo Mat. di Palermo, 50, 1926.

65. Langweiler. ZS. techn. Physik, 19, 416, 1938.

66. Mach E. u. Woszka. Sitzber. Wiener. Akad., 72, 1875.

67. Mach E. u. Scmmer. ibid. 75,101, 1877.

68. Mach E ., Tumlirz u. Kttgler. ibid. W, 1878.

69. MachE. ibid. 77, 819, 1878.

70. Mayer-Schuchardt C. Forschungsheft V .D .I., No. 376, 13, 1936.

71. MeyerTh. Forschungsheft V .D .I., No. 62, 1908.

72. O. 'Neil H. T. see Thuras A. L. (94).

73. Preiswerk E. Mitteil. Inst. Aerodynam., No. 7, Zlirich, 1938.

221



74. Pohlhausen. ZS. Angew. Math. Mech., 1, 115, 1921.

75. Poisson. Journ. Ecole Polytechn., 2. 319, 1820.

76. Prandtl L. ZS. f. d. gesamte Turbinenwesen, 1906.

77. Prandtl L. Physik. Zeitschr., 8, 23, 1907.

78. Rankine. Philos. Trans.. 160. 277, 1870.

79. Rayleigh. Proc. Roj,. Soc. A, 247, 1910.

80. Richards W.T. Rev of Modern Physics, 11, 40, 1939.

81. Riemann B. Abhandl. d. Gesellsch. d. Wissensch. in GUttingen. Math. -Phys. Klasse,
8, 43, 1860.

82. Rcsicky. Sitzungsber. Wiener Akad., 73, 1876.

83. RUdenberg. Artill. Monatshefte, 1916.

84. Schardin. Physikal. Zeitschrift, 34, 50, 1933.

85. Schardin. Deutsche JSgerzeitung, 1933.

86. Schardin see Cranz C. [44].

87. Schmidt E.ZS. V .D .I., 73, 671, 1935 and Schriften der Deutschen Akademie der 
Luftfahrtforschung, No. 9, 1939 (Paper submitted at the Conference in May 1939, 
published in the collection "Physical and Chemical Processes during Combustion 
in an Engine").

88. Sommer see Mach E. [67].

89. Stodola. Dampf- u. Gastrubinen, 1925.

90. Stokes G.G. Transact. Cambridge Philosoph. Soc., ii, 297, 1845.

91. Stokes G.G. Philosoph. Magaz. (4), 2. 305, 1851.

92. Stokes G.G. Philosoph. Magaz. (3), 33, 349, 1848.

93. Taylor G.I. Proc. Roy. Soc., 84, 371, 1910.

94. Thuras A. L ., Jenkins R. T. a O'Neil H. T. Journ. Acoust. Soc. America, 6,
173, 1935.

95. Tumlirz see Mach E. [68].

96. Vieille. Mem. des poudres et salpetres, 10, 177, 1899/1900.

97. Weber H. Riemann-Weber, Die partiellen Differenti&l-Gleichungen der Mathematischen 
Physik, Ed. H, 1919 and 1925.

98. Woszka see Mach E. [66].

222



99. Zemplen, Comptes Rendus, 141. 712, 1905; 142. 142, 1906.

100. Zener. Phys. Rev., 53, 90, 1938 and 56, 343, 1939.

101. Bernal'. Fizika vozdushn. naletov. (The Physics of Air-raids). Uspekhi 
fizicheskikh nauk, 26, 169, 1944.

102. Grib, A. A. O rasprostranenii ploakoy udamoy volny pri obyknovennom vzryve
u tverdoy stenki (On the Propagation of a Plane Shock Wave in the Case of a Con
ventional Explosion near a Solid Wall). Prikladnaya matematika i mekhanika 
8, 169, 1944.

103. Zel'dovich, Ya. B. Teoriya goreniya i detonatsii gazov. (Theory of Combustion 
and Detonation of Gases). Leningrad, Academy of Sciences Press, 1944.

104. Zel'dovich, Ya. B ., and Leypunskiy, O.I. Issledovaniye khimicheskikh reaktsiy 
v udamykh volnakh (The Study of Chemical Reactions in Shock Waves). Acta 
Physicochimica USSR. Jjj, 167, 1943. Dostizheniye rekordnykh temperatur v 
udarnoy volne (Attainment of Record Temperatures in a Shock Wave). Journal 
of Physics (USSR) No. 5, 1943.

105. Zel'dovich, Ya. B ., and Khariton, Yu.B. Nauchno-issledovatel'skiye raboty 
khimicheskikh institutov Akademii Nauk za 1941 -  1943 gg. (Scientific Research 
Work of the Chemical Institutes of the Academy of Sciences from 1941 to 1943). 
Akademicheskoye Izdatel'stvo (Academic Press), in press.

106. Landau, L .D .. and Lifshits, Ye.M. Mekhanika sploshnykh sred (The Mechanics 
of Continua). L TTI, 1944.

107. Landau, L .D ., and Stanyukovich K.P. Ob izuchenii detonatsii kondensirovannykh 
vzryvchatykh veshchestv (Study of the Detonation of Condensed Explosives).
Doklady USSR Academy of Sciences, 46, 399, 1945.

108. landau, L. D ., and Stanyukovich, K. P. Opredeleniye skorosti istecheniya produktov 
detonatsii kondensirovannykh vzryvchatykh veshchestv (Determination of the Outflow 
Velocity of Detonation Products of Condensed Explosives). Doklady USSR Academy of 
Sciences, 47, 273, 1945.

109. Pokrovskiy, G. I. Issledovaniye udara i vzryva v deformiruyemykh sredakh (Study 
of Shocks arid Explosions in Deformable Media). Published by VIA, 1937.

110. Pokrovskiy, G.I. Napravlennoye deystviye vziyva (Directional Explosion Effect). 
Voyenizdat, 1942.

111. Rua, M. O poleznom deystvii i usloviyakh primeneniya raketnykh apparatov (On 
the Efficiency and Application of Rocket Devices). ONTI, 1936.

112. Serebryakov, M. Ye., Greteni and Oppokov. Vnutremnaya ballistika (Internal 
Ballistics). Oborongiz, 1939.

113. Savich. Dinamika vzryvnykh vol (The Dynamics of Blast Waves). Published by 
VIA, Moscow, 1941.

114. Esklangon. Akustika orudiy i snaryadov (The Acoustics of Guns and Projectiles). 
Leningrad, VTA RKKA, 1929.

223



115. Shmushkevich. Predel'nyy zakon oslableniya plcskoy udarnoy volny (The Extremal 
Law of Weakening Plane Shock Waves). Zhurnal tekhnicheskoy fiziki 8, 2138, 1938.

116. Khariton, Yu.B. and Rozing, V. O kriticheskom diametre pri detonatsii (The 
Critical Diameter during Detonation). Doklady USSR Academy of Sciences 26,
360, 1940.

117. Bolle, Zs.techn. Phys. 7, 126, 1926.

118. Crussard. Compt Rend. 156, 447, 611, 1913.

119. Dautriche, Compt. Rend. 154 1221, 1912.

120. Jouguet. Compt. Rend. 202, 1225, 1320, 1936.

121. Michel-Levy et Murauor, Compt. Rend. 198, 825, 1499, 1760, 2091, 1934.

122. Per rota, Gawthrop. Journ. Frankl. Inst. 208, 643, 1928.

123. Vautier. Compt Rend. 179. 256, 1924.

124. Schmidt. A. Zs. Ges. Schiess. u. Sprw. 30, 1935 and 31, 1936.

125. Zel'dovich, Ya.B. and Leypunskiy, O.I. Zhum. Eksp. Teor. Fiziki, 13, 183, 
1943.

126. Wallmann Ann, d. Physik 21, 676, 1934.

127. Sadovskiy, M. A. Trudy of the Seismic Institute of the Academy of Sciences, 116, 
1945.

128. Landau, L.D. Prik. Mat. Mekh., 9, 286, 1945.

FOOTNOTES

p. 7. 1This equation refers to a specific combination of molecules of a fluid (Lagrange 
representation). According to Euler's representation for a specific volume 
fixed in space, the energy equation has a more complex form.

o
p. 7. Ib is equation is applied by us to a substance the state of which is fully determined 

by a specific volume v and specific entropy S. It is not applicable, for instance, 
to a system which is not in chemical equilibrium, in which during motion there 
occurs an irreversible chemical reaction.

q
p. 7. The general gas dynamics equ? ;ons that take account of viscosity and thermal 

conduction are given in the Ap^ndix at the end of the present Chapter. The 
reader can skip this Appendix without impairing his understanding of what follows, 
if he takes for granted the statement regarding the applicability of Eqs. (1-1) -  
(1- 6).

p. 18. 3aWe use the transformations
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4 2 p. 21. The flow of a substance through a spherical surface with radius r  is 4irr u.
Hie difference in the flows of substance that have crossed spheres with radii
r  and r  + dr, is the amount of substance that remains in a spherical layer with
a volume equal to 4 ir r 2 dr, and it changes the density of the substance
enclosed in that layer.

5
p. 24. Over and above the amount contained in a given volume with a nonturbulent 

density value.

p. 28. 6The relation \ ^ ) 3~  ( d^)r in its general form can be derived from the

fundamental hydrodynamic relations for any system, and not only for an ideal 
gas in which cp and c^ depend only on T (see Landau and Lifshits [15., p. 48,
problem]. The direct measurement of \ ^ ) s or cy is extremely difficult in the
case of liquids. For the computation one uses the thermodynamic relation

(ibid., problem No. 11), whence

M*\ ' \ d v j r
\dt>Js (dp\ 7* /j£p) **

r \dvJT r U r j .

Finally, the quantity can be expressed by means of isothermic com

pressibility and the coefficient of thermal expansion—a relation common to any 
three quantities connected by one equation—by the equation of state p = p(v, T) 
in the given case

(Max Planck, Thermodynamics, Chap. 1), so that

[iP.\ _ _ (*P.) (?*) .IiTj , Uwrlar/,

The connection between the derivatives with, respect to density in (11-30, n-31) 
and the derivatives with respect to volume is elementary

7
p. 29. Later measurements by Wallmann [126] yielded a second, smaller number of 

collisions.
g

p. 30. To return precisely to point A, this heat should be marked on BC or A'A.
However, the heat sampled during the cycle and, accordingly, the shift of the 
initial point in the case of absence of heat sampling, are of a smaller order of 
magnitude than shifts AB, AAV, AC and BC in Fig. 3. We have disregarded 
them in die text and in Fig. 3.

225



p. 35.

p. 36. 

p. 41. 

p. 42.

p. 43.

p. 47.

p. 47. 

p. 49. 

p. 51.

p. 52.

p. 59.

p. 62.

p. 77.

The beginning of the process—the change of the form of wave b—is taken as a 
change in the spectral composition of sound, as the appearance of overtones 
(which can be proved by expanding curve b in a Fourier series) and the change 
in tone when sound propagates over great distances (see Thuras, Jenkins & 
O’Neil [94, 52, 53] and also a similar paper by Eykhenval'd [34]).

1^See Landau and Lifshits [15], pp. 41-43, Chap. 13 "Steady Flow".
11The history of the problem is brilliantly expounded in Storiola's manual [89].
12The process of mixing and slowing down a jet was investigated by G.N. 

Abramovich (TsAGI) and S.N. Syrkin and Lyakhovskiy (Tf.KTI).
13To obtain a satisfactory thermal efficiency in his steam turbine, Laval had to 

operate with a very wide pressure differential po -  p n that exceeded the 
critical one. In order to use it without losses, the switch to supersonic speed 
became necessary.

14.We can see from the formulas of Chapter 2 that in an incompressible liquid
dtf _ n dp_ _  _

dg ~  the speed of sound is infinite, motions remains 
"subsonic" for any speed.

15

16,
Figure 12 had been done at a reduced scale.

To write Eq. (IV-1) we use (HI-5) and (HI-16).
17,We will see in Chapter 17 that in the presence of a shock wave pressure is not 

entirely restored; the temperature, however, is completely restored up to 
the magnitude of "temperature at rest" in the case of deceleration.

18,We investigate heat transfer of the plate only with the gas. Heat transfer into 
the plate or radiation from the plate's surface reduce surface temperature 
(see Kibel’S [10]).

The letters AB in Fig. 16a, b are totally unrelated to points A and B in Fig. 14.
20The velocity tangential to surfaces A and B must be maintained in terms of 

magnitude and direction when the substance passes through the wave. 
Consequently, a tangential motion can be totally excluded from Hie investiga
tion by a corresponding choice of a uniformly moving system of coordinates.

22The constant addend that appears in I if the thermal capacity below T^ differs
from Hie thermal capacity in the interval from T„ to T i  contained in the 
formulas, can be eliminated by choosing corresf&ndingly the energy reading 
point. In any event, the constant addent disappears from equations of the form 
(VHI-5) and (VHI-6).

p. 98.

p. 100,

23, and Hg are the accepted abbreviations for Hugoniot's adiabatic curves, for 
which Hie subscripts A and B denote the initial point.

24Eq. (IX-3) cap be derived fm n Eq. (VHI-6) if from density we switch to 
specific volume.
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25p. 100. T in Eq. (XI-5) is enclosed between and T^. To prove this we pass
from state A to B (Fig. 29) by isentropic compression (AC) and subsequent 
heating of the compressed gas in a constant volume (CB)

26p. 101. We note that v^ is smaller than v^ so that u  <0.
27p. 102. It may be useful to point out another time that the calculation of the area of 

the trapezium limited by straight line AFB (Fig. 29) is based on the expres
sion of Hrgoniot's adiabatic curve which follows from the conservation laws 
applied to the state before and after the passage of the wave. This calcula
tion is not connected in any way with the problem of the shape of the line 
along which in actual fact the state in the wave changes (see Chapter 12).

28p. 102. An incredibily rapid increase in thermal capacity is required for the

absolute quantity to drop with increasing temperature on account

of a drop in k = c /c  .K p v
p. 103. ^T he change in the quantity on which depends sound velocity when

changing from A to C or from A to B, is of the first order in v^ - v9. The 
change in when passing from C to B is of the third order.

30p. 103. D, c1 and c with small amplitude differ by a quantity proportional to the
X £»

amplitude. Velocity u is also proportional to the amplitude. With an 
accuracy up to quantities proportional to the square of the amplitude, shock 
wave velocity is equal to the arithmetic mean of sound velocity at initial 
state 0  ̂ and disturbance propagation velocity in the direction of the wave in
a compressed, moving gas + u

r. ci C2-+-«u ------- j  *
31p. 108. In Fig. 32, Poisson's adiabatic curves passing through points A, B, and M

are denoted by F . , P_ and P .,.A B M
32p. 111. In states A and B, obviously du/dx = 0. When integrating it must be borne 

in mind that = comi according to the equation of conservation of matter.
33p. 113. In all computations referred to above we took an ideal gas for which (at 

leas* in order of magnitude) there take place the following estimates

(*£.)------i . -
\hfla »» iv* ~  o*

In the general case we can readily establish that, all other conditions being 

equal, the width of the front is inversely proportional to { ^ t  )s * depending 

on the role played by this quantity in shock wa^e theory.
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34p. 119. We confine ourselves here to referring to Kan'yar who investigated motion
with a small amplitude. Unlike other authors, he studied from the beginning 
those equations of motion that contain terms expressing viscosity so that his 
calculations cover not only the formation of shock waves, but also the steady- 
state structure of the wave front. There is little physical interest in such a 
study since the effect of viscosity prior to the formation of a shock wave is 
negligible, and the steady-state structure is found easier by direct methods 
which proceed from the assumption of a stationary wave.

35p. 123. All computations are referred to the state prior to the occurrence of the 
shock wave t < L , i . e . , t'<0. Motion occurs in the region x < x . , where 
x’ < 0. 0 0

p. 125. For t—tjjEqs. (XTV-20) -  (XIV-21) lead to xr — x^, which corresponds to
infinite compression (a finite amount of substance from segment 0 -  x^ is
compressed into an interval between x and x. that approaches zero), infinite 
pressure and velocity. n

37p. 130. Far away from resonance, Ap and w change with an appreciable phase shift, 
hence Eq. (XV-2) would be incorrect (too high).

38p. 137. For a diatomic gas with c /c  =1.4.  In the general case, one will need for
P ^

this a velocity in excess of A __ where K, and are the adiabatic
Ka -  1 Kb-  1 A

exponents of gases A and B.
39p. 140. Cq is sound velocity in the air. Sound velocity in liydi*ogen is equal to 4c^.
40p. 141. A and B are not shown in Fig. 36, but they are used below in Fig. 41c. See 

also Figs. 39 and 40b.
41 if I*p. 147. Jl^vdp-t-TJS; for / - =  c o n s t ^  =  — — •

42p. 148. Eq. (m-5) is true only for that system of coordinates in which the body and the 
shock wave rest. In the system of coordinates in which the unperturbed gas 
rests while the body moves, as the body comes closer the gas particles are 
subject to compression (gas enthalpy increases) and start moving. They also 
acquire a kinetic energy so that the sum I + u2/2 increases. Eq. (m -5 ) 
cannot be applied in this system of coordinates.

43p. 160. In a jet-propelled missile the gunpowder burns under constant pressure, and 
develops a temperature that is lower than during combustion in a sealed con
tainer. Hence the power of gunpowder f, contained in Eqs. (XVIH-lf,) -  
(XVm-14) must be reduced with respect to thermal capacity, i . e . , by 
K = 1.25 times as compared with the power of the same gunpowder measured 
in a sealed container.

44p. 165 According to a remark by Landau, the abrupt increase in pressure in a shock 
wave causes simultaneously the separation of the boundary layer.

45p. 168. Belyayev defended his thesis in 1935. Similar calculations were performed 
independently by Vlasrv [3].
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p. 172. Here we do not investigate the case when the reacting substance is enclosed 
in a hermetically sealed shell. Under such conditions, even a slow chemical 
reaction accompanied by liberation of gas, develops a very high pressure 
contained by the solid vessel. The rupture of a high-pressure vessel 
recalls an explosion in many ways, but the details of this process which 
depend on the properties of the material of the container, and on its 
design, do net interest us.

47p. 172. This velocity is different from the rate of the chemical reaction of a specific 
particle of the substance characterized by reaction time. As in the case of 
the propagation of the reaction, we must distinguisn between reaction time 
of the entire charge (which, in the simplest case of constant velocity, is 
proportional to the size of the charge) and reaction time of individual 
particles of substances; reaction time of individual particles obviously 
represents only a portion of the former, since in an explosion the various 
particles do not react simultaneously, and in the afore-mentioned simplest 
case do not depend on the size of the charge.

48p. 173. In the case of a nonsymmetric propagation of the detonation, the distance
covered by the explosion products and the power of the explosion is greater 
in some directions (mainly in the direction of detonation wave propagation) 
and smaller in others. Here we will not touch upon the extremely interest
ing and important problem regarding cumulative charges characterized by 
an extremely powerful concentration of energy in an assigned direction.
This problem is studied by specialized literature [110].

49p. 174. The heat of TNT combustion in a calori netric bomb with excess oxygen
amounts to 3592 keal/kg (with formation of water); combustion with forma- 
tic" of water vapor yields about 3480 keal/kg. The heat of a TNT explosion 
with a hi^h-density charge, according to Schmidt, equals 1085 keal/kg. ’Ve 
find the heat of explosion products combustion by subtracting the explosion 
heat (3480 -  1085 = 2395) from TNT combustion heat.

p. 174. 5®The phenomenon of the barrel flame is well known. After the projectile has 
left the barrel, the gunpowder combustion products flow out and mix with 
the surrounding air. If they contain a sufficient amount of combustible and 
if the temperature is sufficiently high, the mixture burns up (explodes) with 
an intense flare.

hi connection with the location of guns by the sound ranging method,
Esclangon [114], followed by other authors, investigated the sound of a 
gunshot and discovered the existence of two separate sound waves: one 
produced by the expansion of the gunpowder combustion products, and 
another one produced by the barrel flames. At a great distance from the guns, 
the latter is more intense than the former and has a long wave length.

p. 175. 51However, in this case it has to borne in mind that the magnitude of destruction, 
if it occurs, depends on the size of the charge (which determines the length 
of the action exerted by pressure). The independence of the presence or the 
absence of destruction from the duration of the effect exerted by pressure, as 
can be seen from what was said above, takes place even with a specific 
minimal reaction time, i. e . , with a specific minimal charge.
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52 (p. 176. The wave pressure momentum is denoted as J —Pc)cl where p^ is atmospheric

pressure (a constant quantity), p = p(t) is pressure at the point under study at 
the passage of a shock wave which is unperturbed by obstacles or measuring 
devices.

53p. 181. If r  is expressed in meters, and m in kilograms, then for a spherical charge

of density 1.6, the value = 1 corresponds to the ratio r/R  = 19. For a
Vm

point lying on the surface of the charge, computed in technical units =  0.053.

p. 182. 54

p. 197. 

p. 197.

p. 198.

p. 199.

p. 206.

p. 208.

55

56

57

58.

The similarity is not exact since in explosion products with initial density 
there occur great deviations from the equation of state for an ideal gas, which 
depend on density. The proper volume of the molecules in explosion products 
gives a characteristic density. One can assume, however, that this circum
stance is of no significance at the moment when the shock wave has travelled 
to reach a considerable distance from the charge, and the explosion products 
have expanded considerably.

See footnote 60.

In the case of an explosion of heavy metal compounds (lead azide, mercury 
fulminate) the high molecular weight of explosion products additionally 
increases density.

Temperature at rest of explosion products turns out to be higher than the 
initial temperature of explosion products (detonation temperature). This is 
characteristic for an unsteady expansion wave in which energy is being 
redistributed: kinetic energy of explosion products rushing ahead is 
generated in part from potential energy (expansion) in deeper layers. These 
relationships are shown in Fig. 20 where we can compare the relation 
between velocity (which determines kinetic energy) and pressure (which 
determines potential energy) for a steady flow in the nozzle for which the 
sum of enthalpy and kinetic energy is constant, and for unsteady expansion.

Vlasov's paper reflects incorrect views regarding the possibility of inter
mittent expansion waves. Fortunately this erro r has no practical effect on 
the numerical results. He also ignores the remark by Landau [1-7, 108] 
regarding the form of the equation of state.

Correction note: Computations by Landau and Stanyukovich [108] give for 
TNT a velocity of explosion products and a ir of 7800 m/sec, a shock wave 
pressure of 750 kg/cm2 and an explosion product temperature of 12Q0*K.

59

60,

More precisely to the state which differs from the initial one only by the 
quantities proportional, in the case of small amplitude, to the cube of the 
amplitude because of a change in entropy from compression in the wave.

We can readily see that initial distribution with constant sign dp/dx > 0 
monotonically approaches linear distribution in time, since the linear term 
in pressure proportional to cQ v  t increases.
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01 * «
p. 209. We have simplified the relationship by taking - ej to be greater than a

or appropriately changing the instant when the time count begins.

p. 212. 62In deriving Eq. (XXIV-27), in Eq. (XXIV-25) we assumed a simple relation
ship between c m  and n t and ignored the terms ~ r-2. in Eq. (XXIV-26) 
we substituted c + u for Cq, assuming the amplitude to be small.

63p. 21C. Proofer's remark: The formula was communicated by M. A. Sadovskiy in a 
paper in 1942. He found later [127] that all the factors have to be decreased 
by a factor of 1.92.
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